File size: 12,010 Bytes
11e16fe
7e7733b
88ae781
caf2618
11e16fe
 
 
2ab7633
11e16fe
 
 
b6d52dc
11e16fe
 
bd57c84
11e16fe
 
 
 
 
 
 
 
79bd6b6
11e16fe
 
79bd6b6
 
 
 
11e16fe
79bd6b6
 
 
 
 
 
 
 
 
 
 
 
 
11e16fe
79bd6b6
 
11e16fe
79bd6b6
11e16fe
79bd6b6
 
 
 
 
 
 
 
 
 
 
 
11e16fe
79bd6b6
11e16fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd57c84
11e16fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caf2618
11e16fe
bd57c84
11e16fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd57c84
11e16fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abc304c
4d4ae71
ada6dd5
9998b9d
5eeb529
 
 
 
9998b9d
 
4d4ae71
88ae781
4d4ae71
 
4680051
4d4ae71
 
4d670fa
4d4ae71
3ca4e17
 
 
 
9998b9d
 
 
3ca4e17
 
 
9998b9d
3ca4e17
caf2618
 
 
9998b9d
 
c8eabf7
caf2618
0b9bf9e
c8eabf7
0b9bf9e
c8eabf7
0b9bf9e
c8eabf7
 
caf2618
 
3ca4e17
 
c8eabf7
9998b9d
 
 
3ca4e17
 
 
 
b6d52dc
 
 
 
4d670fa
88ae781
4d4ae71
 
 
 
3ca4e17
 
b6d52dc
4d4ae71
3ca4e17
 
 
 
 
 
1ca7095
 
 
3ca4e17
4d4ae71
edbec6e
 
3ca4e17
4d4ae71
 
b6d52dc
 
 
4d4ae71
 
 
3ca4e17
4d4ae71
c8eabf7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import matplotlib.pyplot as plt
from matplotlib.backends.backend_agg import FigureCanvasAgg
import matplotlib.colors as mcolors
from matplotlib.colors import LinearSegmentedColormap
import seaborn as sns
import numpy as np
import pandas as pd
import cv2
from matplotlib.patches import Rectangle
from utils import seconds_to_timecode
from anomaly_detection import determine_anomalies
import gradio as gr

def plot_mse(df, mse_values, title, color='navy', time_threshold=3, anomaly_threshold=4):
    plt.figure(figsize=(16, 8), dpi=300)
    fig, ax = plt.subplots(figsize=(16, 8))

    if 'Seconds' not in df.columns:
        df['Seconds'] = df['Timecode'].apply(
            lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))

    # Ensure df and mse_values have the same length and remove NaN values
    min_length = min(len(df), len(mse_values))
    df = df.iloc[:min_length].copy()
    mse_values = mse_values[:min_length]

    # Remove NaN values and create a mask for valid data
    valid_mask = ~np.isnan(mse_values)
    df = df[valid_mask]
    mse_values = mse_values[valid_mask]

    # Function to identify continuous segments
    def get_continuous_segments(seconds, values, max_gap=1):
        segments = []
        current_segment = []
        for i, (sec, val) in enumerate(zip(seconds, values)):
            if not current_segment or (sec - current_segment[-1][0] <= max_gap):
                current_segment.append((sec, val))
            else:
                segments.append(current_segment)
                current_segment = [(sec, val)]
        if current_segment:
            segments.append(current_segment)
        return segments

    # Get continuous segments
    segments = get_continuous_segments(df['Seconds'], mse_values)

    # Plot each segment separately
    for segment in segments:
        segment_seconds, segment_mse = zip(*segment)
        ax.scatter(segment_seconds, segment_mse, color=color, alpha=0.3, s=5)
        
        # Calculate and plot rolling mean and std for this segment
        if len(segment) > 1:  # Only if there's more than one point in the segment
            segment_df = pd.DataFrame({'Seconds': segment_seconds, 'MSE': segment_mse})
            segment_df = segment_df.sort_values('Seconds')
            mean = segment_df['MSE'].rolling(window=min(10, len(segment)), min_periods=1, center=True).mean()
            std = segment_df['MSE'].rolling(window=min(10, len(segment)), min_periods=1, center=True).std()
            
            ax.plot(segment_df['Seconds'], mean, color=color, linewidth=0.5)
            ax.fill_between(segment_df['Seconds'], mean - std, mean + std, color=color, alpha=0.1)

    # Rest of the function remains the same
    median = np.median(mse_values)
    ax.axhline(y=median, color='black', linestyle='--', label='Median Baseline')

    threshold = np.mean(mse_values) + anomaly_threshold * np.std(mse_values)
    ax.axhline(y=threshold, color='red', linestyle='--', label=f'Threshold: {anomaly_threshold:.1f}')
    ax.text(ax.get_xlim()[1], threshold, f'Threshold: {anomaly_threshold:.1f}', verticalalignment='center', horizontalalignment='left', color='red')

    anomalies = determine_anomalies(mse_values, anomaly_threshold)
    anomaly_frames = df['Frame'].iloc[anomalies].tolist()

    ax.scatter(df['Seconds'].iloc[anomalies], mse_values[anomalies], color='red', s=20, zorder=5)

    anomaly_data = list(zip(df['Timecode'].iloc[anomalies],
                            df['Seconds'].iloc[anomalies],
                            mse_values[anomalies]))
    anomaly_data.sort(key=lambda x: x[1])

    grouped_anomalies = []
    current_group = []
    for timecode, sec, mse in anomaly_data:
        if not current_group or sec - current_group[-1][1] <= time_threshold:
            current_group.append((timecode, sec, mse))
        else:
            grouped_anomalies.append(current_group)
            current_group = [(timecode, sec, mse)]
    if current_group:
        grouped_anomalies.append(current_group)

    for group in grouped_anomalies:
        start_sec = group[0][1]
        end_sec = group[-1][1]
        rect = Rectangle((start_sec, ax.get_ylim()[0]), end_sec - start_sec, ax.get_ylim()[1] - ax.get_ylim()[0],
                         facecolor='red', alpha=0.2, zorder=1)
        ax.add_patch(rect)

    for group in grouped_anomalies:
        highest_mse_anomaly = max(group, key=lambda x: x[2])
        timecode, sec, mse = highest_mse_anomaly
        ax.annotate(timecode, (sec, mse), textcoords="offset points", xytext=(0, 10),
                    ha='center', fontsize=6, color='red')

    max_seconds = df['Seconds'].max()
    num_ticks = 100
    tick_locations = np.linspace(0, max_seconds, num_ticks)
    tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]

    ax.set_xticks(tick_locations)
    ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)

    ax.set_xlabel('Timecode')
    ax.set_ylabel('Mean Squared Error')
    ax.set_title(title)

    ax.grid(True, linestyle='--', alpha=0.7)
    ax.legend()
    plt.tight_layout()
    plt.close()
    return fig, anomaly_frames

def plot_mse_histogram(mse_values, title, anomaly_threshold, color='blue'):
    plt.figure(figsize=(16, 3), dpi=300)
    fig, ax = plt.subplots(figsize=(16, 3))

    ax.hist(mse_values, bins=100, edgecolor='black', color=color, alpha=0.7)
    ax.set_xlabel('Mean Squared Error')
    ax.set_ylabel('Number of Samples')
    ax.set_title(title)

    mean = np.mean(mse_values)
    std = np.std(mse_values)
    threshold = mean + anomaly_threshold * std

    ax.axvline(x=threshold, color='red', linestyle='--', linewidth=2)

    plt.tight_layout()
    plt.close()
    return fig


def plot_mse_heatmap(mse_values, title, df):
    plt.figure(figsize=(20, 3), dpi=300)
    fig, ax = plt.subplots(figsize=(20, 3))

    # Reshape MSE values to 2D array for heatmap
    mse_2d = mse_values.reshape(1, -1)

    # Create heatmap
    sns.heatmap(mse_2d, cmap='YlOrRd', cbar=False, ax=ax)

    # Set x-axis ticks to timecodes
    num_ticks = 60
    tick_locations = np.linspace(0, len(mse_values) - 1, num_ticks).astype(int)
    tick_labels = [df['Timecode'].iloc[i] for i in tick_locations]

    ax.set_xticks(tick_locations)
    ax.set_xticklabels(tick_labels, rotation=90, ha='center', va='top')

    ax.set_title(title)

    # Remove y-axis labels
    ax.set_yticks([])

    plt.tight_layout()
    plt.close()
    return fig

def plot_posture(df, posture_scores, color='blue', anomaly_threshold=3):
    plt.figure(figsize=(16, 8), dpi=300)
    fig, ax = plt.subplots(figsize=(16, 8))

    df['Seconds'] = df['Timecode'].apply(
        lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))

    posture_data = [(frame, score) for frame, score in posture_scores.items() if score is not None]
    posture_frames, posture_scores = zip(*posture_data)

    # Create a new dataframe for posture data
    posture_df = pd.DataFrame({'Frame': posture_frames, 'Score': posture_scores})


    posture_df = posture_df.merge(df[['Frame', 'Seconds']], on='Frame', how='inner')

    ax.scatter(posture_df['Seconds'], posture_df['Score'], color=color, alpha=0.3, s=5)
    mean = posture_df['Score'].rolling(window=10).mean()
    ax.plot(posture_df['Seconds'], mean, color=color, linewidth=0.5)

    ax.set_xlabel('Timecode')
    ax.set_ylabel('Posture Score')
    ax.set_title("Body Posture Over Time")

    ax.grid(True, linestyle='--', alpha=0.7)

    max_seconds = df['Seconds'].max()
    num_ticks = 80
    tick_locations = np.linspace(0, max_seconds, num_ticks)
    tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]

    ax.set_xticks(tick_locations)
    ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)

    plt.tight_layout()
    plt.close()
    return fig


def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_voice, output_path, desired_fps, largest_cluster):
    # Filter the DataFrame to only include frames from the largest cluster
    df_largest_cluster = df[df['Cluster'] == largest_cluster]
    mse_embeddings = mse_embeddings[df['Cluster'] == largest_cluster]
    mse_posture = mse_posture[df['Cluster'] == largest_cluster]
    mse_voice = mse_voice[df['Cluster'] == largest_cluster]
    
    cap = cv2.VideoCapture(video_path)
    original_fps = cap.get(cv2.CAP_PROP_FPS)
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    out = cv2.VideoWriter(output_path, fourcc, original_fps, (width, height + 200))
    
    mse_embeddings = np.interp(np.linspace(0, len(mse_embeddings) - 1, total_frames), 
                               np.arange(len(mse_embeddings)), mse_embeddings)
    mse_posture = np.interp(np.linspace(0, len(mse_posture) - 1, total_frames), 
                            np.arange(len(mse_posture)), mse_posture)
    mse_voice = np.interp(np.linspace(0, len(mse_voice) - 1, total_frames), 
                          np.arange(len(mse_voice)), mse_voice)

    
    mse_embeddings_norm = (mse_embeddings - np.min(mse_embeddings)) / (np.max(mse_embeddings) - np.min(mse_embeddings))
    mse_posture_norm = (mse_posture - np.min(mse_posture)) / (np.max(mse_posture) - np.min(mse_posture))
    mse_voice_norm = (mse_voice - np.min(mse_voice)) / (np.max(mse_voice) - np.min(mse_voice))
    
    combined_mse = np.zeros((2, total_frames))
    combined_mse[0] = mse_embeddings_norm  # Use normalized MSE values for facial
    combined_mse[1] = mse_posture_norm  # Use normalized MSE values for posture
    combined_mse[2] = mse_voice_norm
    
    # Custom colormap definition
    cdict = {
        'red':   [(0.0,  0.5, 0.5),  # Low MSE: 50% red (gray)
                  (1.0,  1.0, 1.0)], # High MSE: Full red
        'green': [(0.0,  0.5, 0.5),  # Low MSE: 50% green (gray)
                  (1.0,  0.0, 0.0)], # High MSE: No green
        'blue':  [(0.0,  0.5, 0.5),  # Low MSE: 50% blue (gray)
                  (1.0,  0.0, 0.0)]  # High MSE: No blue
    }

    custom_cmap = LinearSegmentedColormap('custom_cmap', segmentdata=cdict, N=256)
    
    fig, ax = plt.subplots(figsize=(width/100, 2))
    # Use the custom colormap in the heatmap generation
    im = ax.imshow(combined_mse, aspect='auto', cmap=custom_cmap, extent=[0, total_frames, 0, 3])
    ax.set_yticks([0.5, 1.5, 2.5])
    ax.set_yticklabels(['Face', 'Posture', 'Voice'])
    ax.set_xticks([])
    plt.tight_layout()
    
    line = None
    
    # Add progress tracking
    progress(0.9, desc="Generating video with heatmap")
    
    for frame_count in range(total_frames):
        cap.set(cv2.CAP_PROP_POS_FRAMES, frame_count)
        ret, frame = cap.read()
        if not ret:
            break
        
        if line:
            line.remove()
        line = ax.axvline(x=frame_count, color='blue', linewidth=3)
        
        canvas = FigureCanvasAgg(fig)
        canvas.draw()
        heatmap_img = np.frombuffer(canvas.tostring_rgb(), dtype='uint8')
        heatmap_img = heatmap_img.reshape(canvas.get_width_height()[::-1] + (3,))
        heatmap_img = cv2.resize(heatmap_img, (width, 200))
        
        # Convert heatmap_img from RGB to BGR
        heatmap_img = cv2.cvtColor(heatmap_img, cv2.COLOR_RGB2BGR)
        
        combined_frame = np.vstack((frame, heatmap_img))
        
        seconds = frame_count / original_fps
        timecode = f"{int(seconds//3600):02d}:{int((seconds%3600)//60):02d}:{int(seconds%60):02d}"
        cv2.putText(combined_frame, f"Time: {timecode}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
        
        out.write(combined_frame)
        
        # Update progress
        progress(0.9 + (0.1 * (frame_count + 1) / total_frames), desc="Generating video with heatmap")
    
    cap.release()
    out.release()
    plt.close(fig)
    
    return output_path