File size: 12,010 Bytes
11e16fe 7e7733b 88ae781 caf2618 11e16fe 2ab7633 11e16fe b6d52dc 11e16fe bd57c84 11e16fe 79bd6b6 11e16fe 79bd6b6 11e16fe 79bd6b6 11e16fe 79bd6b6 11e16fe 79bd6b6 11e16fe 79bd6b6 11e16fe 79bd6b6 11e16fe bd57c84 11e16fe caf2618 11e16fe bd57c84 11e16fe bd57c84 11e16fe abc304c 4d4ae71 ada6dd5 9998b9d 5eeb529 9998b9d 4d4ae71 88ae781 4d4ae71 4680051 4d4ae71 4d670fa 4d4ae71 3ca4e17 9998b9d 3ca4e17 9998b9d 3ca4e17 caf2618 9998b9d c8eabf7 caf2618 0b9bf9e c8eabf7 0b9bf9e c8eabf7 0b9bf9e c8eabf7 caf2618 3ca4e17 c8eabf7 9998b9d 3ca4e17 b6d52dc 4d670fa 88ae781 4d4ae71 3ca4e17 b6d52dc 4d4ae71 3ca4e17 1ca7095 3ca4e17 4d4ae71 edbec6e 3ca4e17 4d4ae71 b6d52dc 4d4ae71 3ca4e17 4d4ae71 c8eabf7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
import matplotlib.pyplot as plt
from matplotlib.backends.backend_agg import FigureCanvasAgg
import matplotlib.colors as mcolors
from matplotlib.colors import LinearSegmentedColormap
import seaborn as sns
import numpy as np
import pandas as pd
import cv2
from matplotlib.patches import Rectangle
from utils import seconds_to_timecode
from anomaly_detection import determine_anomalies
import gradio as gr
def plot_mse(df, mse_values, title, color='navy', time_threshold=3, anomaly_threshold=4):
plt.figure(figsize=(16, 8), dpi=300)
fig, ax = plt.subplots(figsize=(16, 8))
if 'Seconds' not in df.columns:
df['Seconds'] = df['Timecode'].apply(
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
# Ensure df and mse_values have the same length and remove NaN values
min_length = min(len(df), len(mse_values))
df = df.iloc[:min_length].copy()
mse_values = mse_values[:min_length]
# Remove NaN values and create a mask for valid data
valid_mask = ~np.isnan(mse_values)
df = df[valid_mask]
mse_values = mse_values[valid_mask]
# Function to identify continuous segments
def get_continuous_segments(seconds, values, max_gap=1):
segments = []
current_segment = []
for i, (sec, val) in enumerate(zip(seconds, values)):
if not current_segment or (sec - current_segment[-1][0] <= max_gap):
current_segment.append((sec, val))
else:
segments.append(current_segment)
current_segment = [(sec, val)]
if current_segment:
segments.append(current_segment)
return segments
# Get continuous segments
segments = get_continuous_segments(df['Seconds'], mse_values)
# Plot each segment separately
for segment in segments:
segment_seconds, segment_mse = zip(*segment)
ax.scatter(segment_seconds, segment_mse, color=color, alpha=0.3, s=5)
# Calculate and plot rolling mean and std for this segment
if len(segment) > 1: # Only if there's more than one point in the segment
segment_df = pd.DataFrame({'Seconds': segment_seconds, 'MSE': segment_mse})
segment_df = segment_df.sort_values('Seconds')
mean = segment_df['MSE'].rolling(window=min(10, len(segment)), min_periods=1, center=True).mean()
std = segment_df['MSE'].rolling(window=min(10, len(segment)), min_periods=1, center=True).std()
ax.plot(segment_df['Seconds'], mean, color=color, linewidth=0.5)
ax.fill_between(segment_df['Seconds'], mean - std, mean + std, color=color, alpha=0.1)
# Rest of the function remains the same
median = np.median(mse_values)
ax.axhline(y=median, color='black', linestyle='--', label='Median Baseline')
threshold = np.mean(mse_values) + anomaly_threshold * np.std(mse_values)
ax.axhline(y=threshold, color='red', linestyle='--', label=f'Threshold: {anomaly_threshold:.1f}')
ax.text(ax.get_xlim()[1], threshold, f'Threshold: {anomaly_threshold:.1f}', verticalalignment='center', horizontalalignment='left', color='red')
anomalies = determine_anomalies(mse_values, anomaly_threshold)
anomaly_frames = df['Frame'].iloc[anomalies].tolist()
ax.scatter(df['Seconds'].iloc[anomalies], mse_values[anomalies], color='red', s=20, zorder=5)
anomaly_data = list(zip(df['Timecode'].iloc[anomalies],
df['Seconds'].iloc[anomalies],
mse_values[anomalies]))
anomaly_data.sort(key=lambda x: x[1])
grouped_anomalies = []
current_group = []
for timecode, sec, mse in anomaly_data:
if not current_group or sec - current_group[-1][1] <= time_threshold:
current_group.append((timecode, sec, mse))
else:
grouped_anomalies.append(current_group)
current_group = [(timecode, sec, mse)]
if current_group:
grouped_anomalies.append(current_group)
for group in grouped_anomalies:
start_sec = group[0][1]
end_sec = group[-1][1]
rect = Rectangle((start_sec, ax.get_ylim()[0]), end_sec - start_sec, ax.get_ylim()[1] - ax.get_ylim()[0],
facecolor='red', alpha=0.2, zorder=1)
ax.add_patch(rect)
for group in grouped_anomalies:
highest_mse_anomaly = max(group, key=lambda x: x[2])
timecode, sec, mse = highest_mse_anomaly
ax.annotate(timecode, (sec, mse), textcoords="offset points", xytext=(0, 10),
ha='center', fontsize=6, color='red')
max_seconds = df['Seconds'].max()
num_ticks = 100
tick_locations = np.linspace(0, max_seconds, num_ticks)
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]
ax.set_xticks(tick_locations)
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)
ax.set_xlabel('Timecode')
ax.set_ylabel('Mean Squared Error')
ax.set_title(title)
ax.grid(True, linestyle='--', alpha=0.7)
ax.legend()
plt.tight_layout()
plt.close()
return fig, anomaly_frames
def plot_mse_histogram(mse_values, title, anomaly_threshold, color='blue'):
plt.figure(figsize=(16, 3), dpi=300)
fig, ax = plt.subplots(figsize=(16, 3))
ax.hist(mse_values, bins=100, edgecolor='black', color=color, alpha=0.7)
ax.set_xlabel('Mean Squared Error')
ax.set_ylabel('Number of Samples')
ax.set_title(title)
mean = np.mean(mse_values)
std = np.std(mse_values)
threshold = mean + anomaly_threshold * std
ax.axvline(x=threshold, color='red', linestyle='--', linewidth=2)
plt.tight_layout()
plt.close()
return fig
def plot_mse_heatmap(mse_values, title, df):
plt.figure(figsize=(20, 3), dpi=300)
fig, ax = plt.subplots(figsize=(20, 3))
# Reshape MSE values to 2D array for heatmap
mse_2d = mse_values.reshape(1, -1)
# Create heatmap
sns.heatmap(mse_2d, cmap='YlOrRd', cbar=False, ax=ax)
# Set x-axis ticks to timecodes
num_ticks = 60
tick_locations = np.linspace(0, len(mse_values) - 1, num_ticks).astype(int)
tick_labels = [df['Timecode'].iloc[i] for i in tick_locations]
ax.set_xticks(tick_locations)
ax.set_xticklabels(tick_labels, rotation=90, ha='center', va='top')
ax.set_title(title)
# Remove y-axis labels
ax.set_yticks([])
plt.tight_layout()
plt.close()
return fig
def plot_posture(df, posture_scores, color='blue', anomaly_threshold=3):
plt.figure(figsize=(16, 8), dpi=300)
fig, ax = plt.subplots(figsize=(16, 8))
df['Seconds'] = df['Timecode'].apply(
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
posture_data = [(frame, score) for frame, score in posture_scores.items() if score is not None]
posture_frames, posture_scores = zip(*posture_data)
# Create a new dataframe for posture data
posture_df = pd.DataFrame({'Frame': posture_frames, 'Score': posture_scores})
posture_df = posture_df.merge(df[['Frame', 'Seconds']], on='Frame', how='inner')
ax.scatter(posture_df['Seconds'], posture_df['Score'], color=color, alpha=0.3, s=5)
mean = posture_df['Score'].rolling(window=10).mean()
ax.plot(posture_df['Seconds'], mean, color=color, linewidth=0.5)
ax.set_xlabel('Timecode')
ax.set_ylabel('Posture Score')
ax.set_title("Body Posture Over Time")
ax.grid(True, linestyle='--', alpha=0.7)
max_seconds = df['Seconds'].max()
num_ticks = 80
tick_locations = np.linspace(0, max_seconds, num_ticks)
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]
ax.set_xticks(tick_locations)
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)
plt.tight_layout()
plt.close()
return fig
def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_voice, output_path, desired_fps, largest_cluster):
# Filter the DataFrame to only include frames from the largest cluster
df_largest_cluster = df[df['Cluster'] == largest_cluster]
mse_embeddings = mse_embeddings[df['Cluster'] == largest_cluster]
mse_posture = mse_posture[df['Cluster'] == largest_cluster]
mse_voice = mse_voice[df['Cluster'] == largest_cluster]
cap = cv2.VideoCapture(video_path)
original_fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, original_fps, (width, height + 200))
mse_embeddings = np.interp(np.linspace(0, len(mse_embeddings) - 1, total_frames),
np.arange(len(mse_embeddings)), mse_embeddings)
mse_posture = np.interp(np.linspace(0, len(mse_posture) - 1, total_frames),
np.arange(len(mse_posture)), mse_posture)
mse_voice = np.interp(np.linspace(0, len(mse_voice) - 1, total_frames),
np.arange(len(mse_voice)), mse_voice)
mse_embeddings_norm = (mse_embeddings - np.min(mse_embeddings)) / (np.max(mse_embeddings) - np.min(mse_embeddings))
mse_posture_norm = (mse_posture - np.min(mse_posture)) / (np.max(mse_posture) - np.min(mse_posture))
mse_voice_norm = (mse_voice - np.min(mse_voice)) / (np.max(mse_voice) - np.min(mse_voice))
combined_mse = np.zeros((2, total_frames))
combined_mse[0] = mse_embeddings_norm # Use normalized MSE values for facial
combined_mse[1] = mse_posture_norm # Use normalized MSE values for posture
combined_mse[2] = mse_voice_norm
# Custom colormap definition
cdict = {
'red': [(0.0, 0.5, 0.5), # Low MSE: 50% red (gray)
(1.0, 1.0, 1.0)], # High MSE: Full red
'green': [(0.0, 0.5, 0.5), # Low MSE: 50% green (gray)
(1.0, 0.0, 0.0)], # High MSE: No green
'blue': [(0.0, 0.5, 0.5), # Low MSE: 50% blue (gray)
(1.0, 0.0, 0.0)] # High MSE: No blue
}
custom_cmap = LinearSegmentedColormap('custom_cmap', segmentdata=cdict, N=256)
fig, ax = plt.subplots(figsize=(width/100, 2))
# Use the custom colormap in the heatmap generation
im = ax.imshow(combined_mse, aspect='auto', cmap=custom_cmap, extent=[0, total_frames, 0, 3])
ax.set_yticks([0.5, 1.5, 2.5])
ax.set_yticklabels(['Face', 'Posture', 'Voice'])
ax.set_xticks([])
plt.tight_layout()
line = None
# Add progress tracking
progress(0.9, desc="Generating video with heatmap")
for frame_count in range(total_frames):
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_count)
ret, frame = cap.read()
if not ret:
break
if line:
line.remove()
line = ax.axvline(x=frame_count, color='blue', linewidth=3)
canvas = FigureCanvasAgg(fig)
canvas.draw()
heatmap_img = np.frombuffer(canvas.tostring_rgb(), dtype='uint8')
heatmap_img = heatmap_img.reshape(canvas.get_width_height()[::-1] + (3,))
heatmap_img = cv2.resize(heatmap_img, (width, 200))
# Convert heatmap_img from RGB to BGR
heatmap_img = cv2.cvtColor(heatmap_img, cv2.COLOR_RGB2BGR)
combined_frame = np.vstack((frame, heatmap_img))
seconds = frame_count / original_fps
timecode = f"{int(seconds//3600):02d}:{int((seconds%3600)//60):02d}:{int(seconds%60):02d}"
cv2.putText(combined_frame, f"Time: {timecode}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
out.write(combined_frame)
# Update progress
progress(0.9 + (0.1 * (frame_count + 1) / total_frames), desc="Generating video with heatmap")
cap.release()
out.release()
plt.close(fig)
return output_path |