File size: 6,559 Bytes
5286b18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
from matplotlib.patches import Rectangle
from utils import seconds_to_timecode
from anomaly_detection import determine_anomalies

def plot_mse(df, mse_values, title, color='navy', time_threshold=3, anomaly_threshold=4):
    plt.figure(figsize=(16, 8), dpi=400)
    fig, ax = plt.subplots(figsize=(16, 8))

    if 'Seconds' not in df.columns:
        df['Seconds'] = df['Timecode'].apply(
            lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))

    # Ensure df and mse_values have the same length and remove NaN values
    min_length = min(len(df), len(mse_values))
    df = df.iloc[:min_length]
    mse_values = mse_values[:min_length]

    # Remove NaN values
    mask = ~np.isnan(mse_values)
    df = df[mask]
    mse_values = mse_values[mask]

    mean = pd.Series(mse_values).rolling(window=10).mean()
    std = pd.Series(mse_values).rolling(window=10).std()
    median = np.median(mse_values)

    ax.scatter(df['Seconds'], mse_values, color=color, alpha=0.3, s=5)
    ax.plot(df['Seconds'], mean, color=color, linewidth=0.5)
    ax.fill_between(df['Seconds'], mean - std, mean + std, color=color, alpha=0.1)

    # Add median line
    ax.axhline(y=median, color='black', linestyle='--', label='Median Baseline')

    # Add threshold line
    threshold = np.mean(mse_values) + anomaly_threshold * np.std(mse_values)
    ax.axhline(y=threshold, color='red', linestyle='--', label=f'Threshold: {anomaly_threshold:.1f}')
    ax.text(ax.get_xlim()[1], threshold, f'Threshold: {anomaly_threshold:.1f}', verticalalignment='center', horizontalalignment='left', color='red')

    anomalies = determine_anomalies(mse_values, anomaly_threshold)
    anomaly_frames = df['Frame'].iloc[anomalies].tolist()

    ax.scatter(df['Seconds'].iloc[anomalies], mse_values[anomalies], color='red', s=20, zorder=5)

    anomaly_data = list(zip(df['Timecode'].iloc[anomalies],
                            df['Seconds'].iloc[anomalies],
                            mse_values[anomalies]))
    anomaly_data.sort(key=lambda x: x[1])

    grouped_anomalies = []
    current_group = []
    for timecode, sec, mse in anomaly_data:
        if not current_group or sec - current_group[-1][1] <= time_threshold:
            current_group.append((timecode, sec, mse))
        else:
            grouped_anomalies.append(current_group)
            current_group = [(timecode, sec, mse)]
    if current_group:
        grouped_anomalies.append(current_group)

    for group in grouped_anomalies:
        start_sec = group[0][1]
        end_sec = group[-1][1]
        rect = Rectangle((start_sec, ax.get_ylim()[0]), end_sec - start_sec, ax.get_ylim()[1] - ax.get_ylim()[0],
                         facecolor='red', alpha=0.2, zorder=1)
        ax.add_patch(rect)

    for group in grouped_anomalies:
        highest_mse_anomaly = max(group, key=lambda x: x[2])
        timecode, sec, mse = highest_mse_anomaly
        ax.annotate(timecode, (sec, mse), textcoords="offset points", xytext=(0, 10),
                    ha='center', fontsize=6, color='red')

    max_seconds = df['Seconds'].max()
    num_ticks = 100
    tick_locations = np.linspace(0, max_seconds, num_ticks)
    tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]

    ax.set_xticks(tick_locations)
    ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)

    ax.set_xlabel('Timecode')
    ax.set_ylabel('Mean Squared Error')
    ax.set_title(title)

    ax.grid(True, linestyle='--', alpha=0.7)
    ax.legend()
    plt.tight_layout()
    plt.close()
    return fig, anomaly_frames

def plot_mse_histogram(mse_values, title, anomaly_threshold, color='blue'):
    plt.figure(figsize=(16, 3), dpi=400)
    fig, ax = plt.subplots(figsize=(16, 3))

    ax.hist(mse_values, bins=100, edgecolor='black', color=color, alpha=0.7)
    ax.set_xlabel('Mean Squared Error')
    ax.set_ylabel('Number of Samples')
    ax.set_title(title)

    mean = np.mean(mse_values)
    std = np.std(mse_values)
    threshold = mean + anomaly_threshold * std

    ax.axvline(x=threshold, color='red', linestyle='--', linewidth=2)

    plt.tight_layout()
    plt.close()
    return fig

def plot_mse_heatmap(mse_values, title, df):
    plt.figure(figsize=(20, 3), dpi=400)
    fig, ax = plt.subplots(figsize=(20, 3))

    # Reshape MSE values to 2D array for heatmap
    mse_2d = mse_values.reshape(1, -1)

    # Create heatmap
    sns.heatmap(mse_2d, cmap='YlOrRd', cbar=False, ax=ax)

    # Set x-axis ticks to timecodes
    num_ticks = 60
    tick_locations = np.linspace(0, len(mse_values) - 1, num_ticks).astype(int)
    tick_labels = [df['Timecode'].iloc[i] for i in tick_locations]

    ax.set_xticks(tick_locations)
    ax.set_xticklabels(tick_labels, rotation=90, ha='center', va='top')

    ax.set_title(title)

    # Remove y-axis labels
    ax.set_yticks([])

    plt.tight_layout()
    plt.close()
    return fig

def plot_posture(df, posture_scores, color='blue', anomaly_threshold=3):
    plt.figure(figsize=(16, 8), dpi=400)
    fig, ax = plt.subplots(figsize=(16, 8))

    df['Seconds'] = df['Timecode'].apply(
        lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))

    posture_data = [(frame, score) for frame, score in posture_scores.items() if score is not None]
    posture_frames, posture_scores = zip(*posture_data)

    # Create a new dataframe for posture data
    posture_df = pd.DataFrame({'Frame': posture_frames, 'Score': posture_scores})


    posture_df = posture_df.merge(df[['Frame', 'Seconds']], on='Frame', how='inner')

    ax.scatter(posture_df['Seconds'], posture_df['Score'], color=color, alpha=0.3, s=5)
    mean = posture_df['Score'].rolling(window=10).mean()
    ax.plot(posture_df['Seconds'], mean, color=color, linewidth=0.5)

    ax.set_xlabel('Timecode')
    ax.set_ylabel('Posture Score')
    ax.set_title("Body Posture Over Time")

    ax.grid(True, linestyle='--', alpha=0.7)

    max_seconds = df['Seconds'].max()
    num_ticks = 80
    tick_locations = np.linspace(0, max_seconds, num_ticks)
    tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]

    ax.set_xticks(tick_locations)
    ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)

    plt.tight_layout()
    plt.close()
    return fig