Spaces:
Runtime error
Runtime error
File size: 6,440 Bytes
295d1f0 5494a42 295d1f0 5286b18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import math
import cv2
import mediapipe as mp
mp_pose = mp.solutions.pose
mp_drawing = mp.solutions.drawing_utils
pose = mp_pose.Pose(static_image_mode=False, min_detection_confidence=0.7, min_tracking_confidence=0.7)
def calculate_posture_score(frame):
image_height, image_width, _ = frame.shape
results = pose.process(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
if not results.pose_landmarks:
return None, None
landmarks = results.pose_landmarks.landmark
# Use only body landmarks
left_shoulder = landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value]
right_shoulder = landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value]
left_hip = landmarks[mp_pose.PoseLandmark.LEFT_HIP.value]
right_hip = landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value]
left_knee = landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value]
right_knee = landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value]
# Calculate angles
shoulder_angle = abs(math.degrees(math.atan2(right_shoulder.y - left_shoulder.y, right_shoulder.x - left_shoulder.x)))
hip_angle = abs(math.degrees(math.atan2(right_hip.y - left_hip.y, right_hip.x - left_hip.x)))
knee_angle = abs(math.degrees(math.atan2(right_knee.y - left_knee.y, right_knee.x - left_knee.x)))
# Calculate vertical alignment
shoulder_hip_alignment = abs((left_shoulder.y + right_shoulder.y) / 2 - (left_hip.y + right_hip.y) / 2)
hip_knee_alignment = abs((left_hip.y + right_hip.y) / 2 - (left_knee.y + right_knee.y) / 2)
# Add head landmarks
nose = landmarks[mp_pose.PoseLandmark.NOSE.value]
left_ear = landmarks[mp_pose.PoseLandmark.LEFT_EAR.value]
right_ear = landmarks[mp_pose.PoseLandmark.RIGHT_EAR.value]
# Calculate head tilt
head_tilt = abs(math.degrees(math.atan2(right_ear.y - left_ear.y, right_ear.x - left_ear.x)))
# Calculate head position relative to shoulders
head_position = abs((nose.y - (left_shoulder.y + right_shoulder.y) / 2) /
((left_shoulder.y + right_shoulder.y) / 2 - (left_hip.y + right_hip.y) / 2))
# Combine metrics into a single posture score (you may need to adjust these weights)
posture_score = (
(1 - abs(shoulder_angle - hip_angle) / 90) * 0.3 +
(1 - abs(hip_angle - knee_angle) / 90) * 0.2 +
(1 - shoulder_hip_alignment) * 0.1 +
(1 - hip_knee_alignment) * 0.1 +
(1 - abs(head_tilt - 90) / 90) * 0.15 +
(1 - head_position) * 0.15
)
return posture_score, results.pose_landmarks
def draw_pose_landmarks(frame, landmarks):
annotated_frame = frame.copy()
# Include relevant landmarks for head position and body
body_landmarks = [
mp_pose.PoseLandmark.NOSE,
mp_pose.PoseLandmark.LEFT_SHOULDER,
mp_pose.PoseLandmark.RIGHT_SHOULDER,
mp_pose.PoseLandmark.LEFT_EAR,
mp_pose.PoseLandmark.RIGHT_EAR,
mp_pose.PoseLandmark.LEFT_ELBOW,
mp_pose.PoseLandmark.RIGHT_ELBOW,
mp_pose.PoseLandmark.LEFT_WRIST,
mp_pose.PoseLandmark.RIGHT_WRIST,
mp_pose.PoseLandmark.LEFT_HIP,
mp_pose.PoseLandmark.RIGHT_HIP,
mp_pose.PoseLandmark.LEFT_KNEE,
mp_pose.PoseLandmark.RIGHT_KNEE,
mp_pose.PoseLandmark.LEFT_ANKLE,
mp_pose.PoseLandmark.RIGHT_ANKLE
]
# Connections for head position and body
body_connections = [
(mp_pose.PoseLandmark.LEFT_EAR, mp_pose.PoseLandmark.LEFT_SHOULDER),
(mp_pose.PoseLandmark.RIGHT_EAR, mp_pose.PoseLandmark.RIGHT_SHOULDER),
(mp_pose.PoseLandmark.NOSE, mp_pose.PoseLandmark.LEFT_SHOULDER),
(mp_pose.PoseLandmark.NOSE, mp_pose.PoseLandmark.RIGHT_SHOULDER),
(mp_pose.PoseLandmark.LEFT_SHOULDER, mp_pose.PoseLandmark.RIGHT_SHOULDER),
(mp_pose.PoseLandmark.LEFT_SHOULDER, mp_pose.PoseLandmark.LEFT_ELBOW),
(mp_pose.PoseLandmark.RIGHT_SHOULDER, mp_pose.PoseLandmark.RIGHT_ELBOW),
(mp_pose.PoseLandmark.LEFT_ELBOW, mp_pose.PoseLandmark.LEFT_WRIST),
(mp_pose.PoseLandmark.RIGHT_ELBOW, mp_pose.PoseLandmark.RIGHT_WRIST),
(mp_pose.PoseLandmark.LEFT_SHOULDER, mp_pose.PoseLandmark.LEFT_HIP),
(mp_pose.PoseLandmark.RIGHT_SHOULDER, mp_pose.PoseLandmark.RIGHT_HIP),
(mp_pose.PoseLandmark.LEFT_HIP, mp_pose.PoseLandmark.RIGHT_HIP),
(mp_pose.PoseLandmark.LEFT_HIP, mp_pose.PoseLandmark.LEFT_KNEE),
(mp_pose.PoseLandmark.RIGHT_HIP, mp_pose.PoseLandmark.RIGHT_KNEE),
(mp_pose.PoseLandmark.LEFT_KNEE, mp_pose.PoseLandmark.LEFT_ANKLE),
(mp_pose.PoseLandmark.RIGHT_KNEE, mp_pose.PoseLandmark.RIGHT_ANKLE)
]
# Draw landmarks
for landmark in body_landmarks:
if landmark in landmarks.landmark:
lm = landmarks.landmark[landmark]
h, w, _ = annotated_frame.shape
cx, cy = int(lm.x * w), int(lm.y * h)
cv2.circle(annotated_frame, (cx, cy), 5, (245, 117, 66), -1)
# Draw connections
for connection in body_connections:
start_lm = landmarks.landmark[connection[0]]
end_lm = landmarks.landmark[connection[1]]
h, w, _ = annotated_frame.shape
start_point = (int(start_lm.x * w), int(start_lm.y * h))
end_point = (int(end_lm.x * w), int(end_lm.y * h))
cv2.line(annotated_frame, start_point, end_point, (245, 66, 230), 2)
# Highlight head tilt
left_ear = landmarks.landmark[mp_pose.PoseLandmark.LEFT_EAR]
right_ear = landmarks.landmark[mp_pose.PoseLandmark.RIGHT_EAR]
nose = landmarks.landmark[mp_pose.PoseLandmark.NOSE]
h, w, _ = annotated_frame.shape
left_ear_point = (int(left_ear.x * w), int(left_ear.y * h))
right_ear_point = (int(right_ear.x * w), int(right_ear.y * h))
nose_point = (int(nose.x * w), int(nose.y * h))
# Draw a line between ears to show head tilt
cv2.line(annotated_frame, left_ear_point, right_ear_point, (0, 255, 0), 2)
# Draw a line from nose to the midpoint between shoulders to show head forward/backward tilt
left_shoulder = landmarks.landmark[mp_pose.PoseLandmark.LEFT_SHOULDER]
right_shoulder = landmarks.landmark[mp_pose.PoseLandmark.RIGHT_SHOULDER]
shoulder_mid_x = (left_shoulder.x + right_shoulder.x) / 2
shoulder_mid_y = (left_shoulder.y + right_shoulder.y) / 2
shoulder_mid_point = (int(shoulder_mid_x * w), int(shoulder_mid_y * h))
cv2.line(annotated_frame, nose_point, shoulder_mid_point, (0, 255, 0), 2)
return annotated_frame |