Update app.py
Browse files
app.py
CHANGED
@@ -87,9 +87,12 @@ def process_image_detection(image, target_label, surprise_rating):
|
|
87 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
88 |
|
89 |
# Get original image DPI and size
|
90 |
-
original_dpi = image.info.get('dpi', (72, 72))
|
91 |
original_size = image.size
|
92 |
|
|
|
|
|
|
|
93 |
owlv2_processor = Owlv2Processor.from_pretrained("google/owlv2-large-patch14")
|
94 |
owlv2_model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-large-patch14").to(device)
|
95 |
|
@@ -105,12 +108,10 @@ def process_image_detection(image, target_label, surprise_rating):
|
|
105 |
target_sizes = torch.tensor([image.size[::-1]]).to(device)
|
106 |
results = owlv2_processor.post_process_object_detection(outputs, target_sizes=target_sizes)[0]
|
107 |
|
108 |
-
|
109 |
-
dpi = 100 # Base DPI for calculation
|
110 |
figsize = (original_size[0] / dpi, original_size[1] / dpi)
|
111 |
fig = plt.figure(figsize=figsize, dpi=dpi)
|
112 |
|
113 |
-
# Remove margins and spacing
|
114 |
ax = plt.Axes(fig, [0., 0., 1., 1.])
|
115 |
fig.add_axes(ax)
|
116 |
|
@@ -142,47 +143,55 @@ def process_image_detection(image, target_label, surprise_rating):
|
|
142 |
mask = masks[0].numpy() if isinstance(masks[0], torch.Tensor) else masks[0]
|
143 |
show_mask(mask, ax=ax)
|
144 |
|
|
|
145 |
rect = patches.Rectangle(
|
146 |
(box[0], box[1]),
|
147 |
box[2] - box[0],
|
148 |
box[3] - box[1],
|
149 |
-
linewidth=2,
|
150 |
edgecolor='red',
|
151 |
facecolor='none'
|
152 |
)
|
153 |
ax.add_patch(rect)
|
154 |
|
|
|
155 |
plt.text(
|
156 |
-
box[0], box[1] -
|
157 |
f'{max_score:.2f}',
|
158 |
-
color='red'
|
|
|
|
|
|
|
159 |
)
|
160 |
|
|
|
161 |
plt.text(
|
162 |
-
box[2] +
|
163 |
f'Unexpected (Rating: {surprise_rating}/5)\n{target_label}',
|
164 |
color='red',
|
165 |
-
fontsize=
|
|
|
|
|
166 |
verticalalignment='bottom'
|
167 |
)
|
168 |
|
169 |
plt.axis('off')
|
170 |
|
171 |
-
# Save with
|
172 |
buf = io.BytesIO()
|
173 |
plt.savefig(buf,
|
174 |
format='png',
|
175 |
dpi=dpi,
|
176 |
bbox_inches='tight',
|
177 |
-
pad_inches=0
|
|
|
178 |
buf.seek(0)
|
179 |
plt.close()
|
180 |
|
181 |
-
#
|
182 |
output_image = Image.open(buf)
|
183 |
output_image = output_image.resize(original_size, Image.Resampling.LANCZOS)
|
184 |
|
185 |
-
# Create a new buffer with the properly sized image
|
186 |
final_buf = io.BytesIO()
|
187 |
output_image.save(final_buf, format='PNG', dpi=original_dpi)
|
188 |
final_buf.seek(0)
|
|
|
87 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
88 |
|
89 |
# Get original image DPI and size
|
90 |
+
original_dpi = image.info.get('dpi', (72, 72))
|
91 |
original_size = image.size
|
92 |
|
93 |
+
# Calculate relative font size based on image dimensions
|
94 |
+
base_fontsize = min(original_size) / 40 # Adjust this divisor to change overall font size
|
95 |
+
|
96 |
owlv2_processor = Owlv2Processor.from_pretrained("google/owlv2-large-patch14")
|
97 |
owlv2_model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-large-patch14").to(device)
|
98 |
|
|
|
108 |
target_sizes = torch.tensor([image.size[::-1]]).to(device)
|
109 |
results = owlv2_processor.post_process_object_detection(outputs, target_sizes=target_sizes)[0]
|
110 |
|
111 |
+
dpi = 300 # Increased DPI for better text rendering
|
|
|
112 |
figsize = (original_size[0] / dpi, original_size[1] / dpi)
|
113 |
fig = plt.figure(figsize=figsize, dpi=dpi)
|
114 |
|
|
|
115 |
ax = plt.Axes(fig, [0., 0., 1., 1.])
|
116 |
fig.add_axes(ax)
|
117 |
|
|
|
143 |
mask = masks[0].numpy() if isinstance(masks[0], torch.Tensor) else masks[0]
|
144 |
show_mask(mask, ax=ax)
|
145 |
|
146 |
+
# Draw rectangle with increased line width
|
147 |
rect = patches.Rectangle(
|
148 |
(box[0], box[1]),
|
149 |
box[2] - box[0],
|
150 |
box[3] - box[1],
|
151 |
+
linewidth=max(2, min(original_size) / 500), # Scale line width with image size
|
152 |
edgecolor='red',
|
153 |
facecolor='none'
|
154 |
)
|
155 |
ax.add_patch(rect)
|
156 |
|
157 |
+
# Add confidence score with improved visibility
|
158 |
plt.text(
|
159 |
+
box[0], box[1] - base_fontsize,
|
160 |
f'{max_score:.2f}',
|
161 |
+
color='red',
|
162 |
+
fontsize=base_fontsize,
|
163 |
+
fontweight='bold',
|
164 |
+
bbox=dict(facecolor='white', alpha=0.7, edgecolor='none', pad=2)
|
165 |
)
|
166 |
|
167 |
+
# Add label and rating with improved visibility
|
168 |
plt.text(
|
169 |
+
box[2] + base_fontsize / 2, box[1],
|
170 |
f'Unexpected (Rating: {surprise_rating}/5)\n{target_label}',
|
171 |
color='red',
|
172 |
+
fontsize=base_fontsize,
|
173 |
+
fontweight='bold',
|
174 |
+
bbox=dict(facecolor='white', alpha=0.7, edgecolor='none', pad=2),
|
175 |
verticalalignment='bottom'
|
176 |
)
|
177 |
|
178 |
plt.axis('off')
|
179 |
|
180 |
+
# Save with high DPI
|
181 |
buf = io.BytesIO()
|
182 |
plt.savefig(buf,
|
183 |
format='png',
|
184 |
dpi=dpi,
|
185 |
bbox_inches='tight',
|
186 |
+
pad_inches=0,
|
187 |
+
metadata={'dpi': original_dpi})
|
188 |
buf.seek(0)
|
189 |
plt.close()
|
190 |
|
191 |
+
# Process final image
|
192 |
output_image = Image.open(buf)
|
193 |
output_image = output_image.resize(original_size, Image.Resampling.LANCZOS)
|
194 |
|
|
|
195 |
final_buf = io.BytesIO()
|
196 |
output_image.save(final_buf, format='PNG', dpi=original_dpi)
|
197 |
final_buf.seek(0)
|