Spaces:
Runtime error
Runtime error
File size: 4,608 Bytes
f115855 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import os
import json
import time
import base64
import requests
import gradio as gr
username = os.environ.get("CLIENT_ID")
passwd = os.environ.get("CLIENT_SECRETS")
def authorization():
url = "https://stage.id.trimblecloud.com/oauth/token"
credential_pair = f"{username}:{passwd}"
payload = "grant_type=client_credentials&scope=DLPointCloudSegmentation"
headers = {
"Content-Type": "application/x-www-form-urlencoded",
"Authorization": f"Basic {base64.b64encode(credential_pair.encode('utf-8')).decode('utf-8')}",
}
response = requests.request("POST", url, headers=headers, data=payload)
response.raise_for_status()
print("Succesfully authenticated")
auth_token = json.loads(response.text)["access_token"]
return auth_token
def create_file(auth_token, input_filename):
url = "https://cloud.stage.api.trimblecloud.com/dataocean/api/3.0/api/files"
payload = json.dumps({"file": {"path": input_filename, "regions": ["us1"]}})
headers = {
"Authorization": f"Bearer {auth_token}",
"Content-Type": "application/json",
}
response = requests.request("POST", url, headers=headers, data=payload)
response.raise_for_status()
print("File created successfully")
file_upload_url = json.loads(response.text)["file"]["upload"]["url"]
return file_upload_url
def upload_file(url, file):
with open(file.name, "rb") as lasFile:
payload = lasFile.read()
headers = {"Content-Type": "application/octet-stream"}
response = requests.request("PUT", url, headers=headers, data=payload)
response.raise_for_status()
print("Upload was successful")
def start_execution(auth_token, input_filename, output_filename="output.las"):
url = "https://cloud.stage.api.trimblecloud.com/Processing/api/1/api/executions"
payload = json.dumps(
{
"execution": {
"procedure_id": "a7c4f9c3-b21a-4c9c-b4df-3dc6ba8934d9",
"region": "aws-us1",
"parameters": {
"source_path": input_filename,
"regions": ["us1"],
"output_path": output_filename,
},
}
}
)
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {auth_token}",
}
response = requests.request("POST", url, headers=headers, data=payload)
response.raise_for_status()
print("Execution has started")
execution_id = json.loads(response.text)["execution"]["id"]
return execution_id
def track_execution(auth_token, execution_id, output_filename):
url = "https://cloud.stage.api.trimblecloud.com/Processing/api/1/api/executions"
payload = {}
headers = {
"Authorization": f"Bearer {auth_token}",
}
response = requests.request("GET", url, headers=headers, data=payload)
status = json.loads(response.text)["items"][0]["execution_status"]
while status != "FINISHED":
response = requests.request("GET", url, headers=headers, data=payload)
status = json.loads(response.text)["items"][0]["execution_status"]
time.sleep(1)
return download_output(auth_token, output_filename)
def download_output(auth_token, output_filename):
url = f"https://cloud.stage.api.trimblecloud.com/dataocean/api/3.0/api/files?path={output_filename}"
payload = ""
headers = {
"Authorization": f"Bearer {auth_token}",
"Content-Type": "application/json",
}
response = requests.request("GET", url, headers=headers, data=payload)
response.raise_for_status()
print("File downloading")
response = json.loads(response.text)
download_url = response["file"]["download"]["url"]
return download_url
def predict(input_file):
input_filename = "input.las"
output_filename = "output.las"
auth_token = authorization()
file_upload_url = create_file(auth_token, input_filename)
upload_file(file_upload_url, input_file)
execution_id = start_execution(
auth_token, input_filename, output_filename
)
download_url = track_execution(auth_token, execution_id, output_filename)
html_content = f'<a href="{download_url}">Download output file</a>'
return "Inference has finished. Click the download button to access the output file", html_content
demo = gr.Interface(
title="Point Cloud inference on the Trimble Cloud",
fn=predict,
inputs=gr.File(file_types=[".las"], file_count="single"),
outputs=[gr.Textbox(), "html"],
)
demo.queue(default_enabled=False).launch() |