Spaces:
Sleeping
Sleeping
import easyocr as ocr #OCR | |
import streamlit as st #Web App | |
from PIL import Image #Image Processing | |
import numpy as np #Image Processing | |
# To read the PDF | |
import PyPDF2 | |
# To analyze the PDF layout and extract text | |
from pdfminer.high_level import extract_pages, extract_text | |
from pdfminer.layout import LTTextContainer, LTChar, LTRect, LTFigure | |
# To extract text from tables in PDF | |
import pdfplumber | |
# To extract the images from the PDFs | |
from PIL import Image | |
from pdf2image import convert_from_path | |
# To perform OCR to extract text from images | |
import pytesseract | |
# To remove the additional created files | |
import os | |
import tiktoken | |
import streamlit as st | |
import pandas as pd | |
from io import StringIO | |
import time | |
import json | |
import openai | |
from langchain.prompts import PromptTemplate | |
from langchain.llms import OpenAI | |
from langchain.chat_models import ChatOpenAI | |
from llama_index.llms import OpenAI | |
# Create function to extract text | |
from langchain.prompts import PromptTemplate | |
from langchain.prompts.chat import ( | |
ChatPromptTemplate, | |
SystemMessagePromptTemplate, | |
AIMessagePromptTemplate, | |
HumanMessagePromptTemplate, | |
) | |
def text_extraction(element): | |
# Extracting the text from the in line text element | |
line_text = element.get_text() | |
# Find the formats of the text | |
# Initialize the list with all the formats appeared in the line of text | |
line_formats = [] | |
for text_line in element: | |
if isinstance(text_line, LTTextContainer): | |
# Iterating through each character in the line of text | |
for character in text_line: | |
if isinstance(character, LTChar): | |
# Append the font name of the character | |
#line_formats.append(character.fontname) | |
# Append the font size of the character | |
#line_formats.append(character.size) | |
line_formats.append("") | |
# Find the unique font sizes and names in the line | |
format_per_line = list(set(line_formats)) | |
# Return a tuple with the text in each line along with its format | |
return (line_text, format_per_line) | |
# Extracting tables from the page | |
def extract_table(pdf_path, page_num, table_num): | |
# Open the pdf file | |
pdf = pdfplumber.open(pdf_path) | |
# Find the examined page | |
table_page = pdf.pages[page_num] | |
# Extract the appropriate table | |
table = table_page.extract_tables()[table_num] | |
return table | |
# Convert table into appropriate fromat | |
def table_converter(table): | |
table_string = '' | |
# Iterate through each row of the table | |
for row_num in range(len(table)): | |
row = table[row_num] | |
# Remove the line breaker from the wrapted texts | |
cleaned_row = [item.replace('\n', ' ') if item is not None and '\n' in item else 'None' if item is None else item for item in row] | |
# Convert the table into a string | |
table_string+=('|'+'|'.join(cleaned_row)+'|'+'\n') | |
# Removing the last line break | |
table_string = table_string[:-1] | |
return table_string | |
# Create a function to check if the element is in any tables present in the page | |
def is_element_inside_any_table(element, page ,tables): | |
x0, y0up, x1, y1up = element.bbox | |
# Change the cordinates because the pdfminer counts from the botton to top of the page | |
y0 = page.bbox[3] - y1up | |
y1 = page.bbox[3] - y0up | |
for table in tables: | |
tx0, ty0, tx1, ty1 = table.bbox | |
if tx0 <= x0 <= x1 <= tx1 and ty0 <= y0 <= y1 <= ty1: | |
return True | |
return False | |
# Function to find the table for a given element | |
def find_table_for_element(element, page ,tables): | |
x0, y0up, x1, y1up = element.bbox | |
# Change the cordinates because the pdfminer counts from the botton to top of the page | |
y0 = page.bbox[3] - y1up | |
y1 = page.bbox[3] - y0up | |
for i, table in enumerate(tables): | |
tx0, ty0, tx1, ty1 = table.bbox | |
if tx0 <= x0 <= x1 <= tx1 and ty0 <= y0 <= y1 <= ty1: | |
return i # Return the index of the table | |
return None | |
# Create a function to crop the image elements from PDFs | |
def crop_image(element, pageObj): | |
# Get the coordinates to crop the image from PDF | |
[image_left, image_top, image_right, image_bottom] = [element.x0,element.y0,element.x1,element.y1] | |
# Crop the page using coordinates (left, bottom, right, top) | |
pageObj.mediabox.lower_left = (image_left, image_bottom) | |
pageObj.mediabox.upper_right = (image_right, image_top) | |
# Save the cropped page to a new PDF | |
cropped_pdf_writer = PyPDF2.PdfWriter() | |
cropped_pdf_writer.add_page(pageObj) | |
# Save the cropped PDF to a new file | |
with open('cropped_image.pdf', 'wb') as cropped_pdf_file: | |
cropped_pdf_writer.write(cropped_pdf_file) | |
# Create a function to convert the PDF to images | |
def convert_to_images(input_file,): | |
images = convert_from_path(input_file) | |
image = images[0] | |
output_file = 'PDF_image.png' | |
image.save(output_file, 'PNG') | |
# Create a function to read text from images | |
def image_to_text(image_path): | |
# Read the image | |
img = Image.open(image_path) | |
# Extract the text from the image | |
text = pytesseract.image_to_string(img) | |
return text | |
#title | |
st.title("Extract Loan details from PDF or Image") | |
#subtitle | |
st.markdown("## Loan detail extractor using `OpenAI` and `streamlit` - hosted on π€ Spaces") | |
st.markdown("Link to the app - [PDF to extract loadn details app on π€ Spaces](https://huggingface.co/spaces/ravi259/Loan-details-extraction-app)") | |
#image uploader | |
file_name = st.file_uploader(label = "Upload your PDF file here",type=['pdf','png','jpg','jpeg']) | |
print(file_name) | |
def read_file_get_prompts(file_name): | |
if file_name is not None: | |
st.write(file_name.name) | |
file_details = {"FileName":file_name.name,"FileType":file_name.type} | |
#st.write(file_details) | |
# Find the PDF path | |
pdf_path = file_name # '/content/data/'+file_name+".pdf" | |
#st.write(pdf_path) | |
#text_file_path = '/content/data/'+file_name+".txt" | |
# Create a pdf file object | |
#pdfFileObj = open(+pdf_path, 'rb') | |
# Create a pdf reader object | |
pdfReaded = PyPDF2.PdfReader(file_name) | |
# Create the dictionary to extract text from each image | |
text_per_page = {} | |
# Create a boolean variable for image detection | |
image_flag = False | |
number_of_pages = len(list(extract_pages(file_name))) | |
result = '' | |
# We extract the pages from the PDF | |
for pagenum, page in enumerate(extract_pages(file_name)): | |
# Initialize the variables needed for the text extraction from the page | |
pageObj = pdfReaded.pages[pagenum] | |
page_text = [] | |
line_format = [] | |
text_from_images = [] | |
text_from_tables = [] | |
page_content = [] | |
# Initialize the number of the examined tables | |
table_in_page= -1 | |
# Open the pdf file | |
pdf = pdfplumber.open(pdf_path) | |
# Find the examined page | |
page_tables = pdf.pages[pagenum] | |
# Find the number of tables in the page | |
tables = page_tables.find_tables() | |
if len(tables)!=0: | |
table_in_page = 0 | |
# Extracting the tables of the page | |
for table_num in range(len(tables)): | |
# Extract the information of the table | |
table = extract_table(pdf_path, pagenum, table_num) | |
# Convert the table information in structured string format | |
table_string = table_converter(table) | |
# Append the table string into a list | |
text_from_tables.append(table_string) | |
# Find all the elements | |
page_elements = [(element.y1, element) for element in page._objs] | |
# Sort all the element as they appear in the page | |
page_elements.sort(key=lambda a: a[0], reverse=True) | |
# Find the elements that composed a page | |
for i,component in enumerate(page_elements): | |
# Extract the element of the page layout | |
element = component[1] | |
# Check the elements for tables | |
if table_in_page == -1: | |
pass | |
else: | |
if is_element_inside_any_table(element, page ,tables): | |
table_found = find_table_for_element(element,page ,tables) | |
if table_found == table_in_page and table_found != None: | |
page_content.append(text_from_tables[table_in_page]) | |
#page_text.append('table') | |
#line_format.append('table') | |
table_in_page+=1 | |
# Pass this iteration because the content of this element was extracted from the tables | |
continue | |
if not is_element_inside_any_table(element,page,tables): | |
# Check if the element is text element | |
if isinstance(element, LTTextContainer): | |
# Use the function to extract the text and format for each text element | |
(line_text, format_per_line) = text_extraction(element) | |
# Append the text of each line to the page text | |
page_text.append(line_text) | |
# Append the format for each line containing text | |
line_format.append(format_per_line) | |
page_content.append(line_text) | |
# Check the elements for images | |
if isinstance(element, LTFigure): | |
# Crop the image from PDF | |
crop_image(element, pageObj) | |
# Convert the croped pdf to image | |
convert_to_images('cropped_image.pdf') | |
# Extract the text from image | |
image_text = image_to_text('PDF_image.png') | |
image_text = "" # removed to remove the errors with image | |
text_from_images.append(image_text) | |
page_content.append(image_text) | |
# Add a placeholder in the text and format lists | |
#page_text.append('image') | |
#line_format.append('image') | |
# Update the flag for image detection | |
image_flag = True | |
# Create the key of the dictionary | |
dctkey = 'Page_'+str(pagenum) | |
# Add the list of list as value of the page key | |
#text_per_page[dctkey]= [page_text, line_format, text_from_images,text_from_tables, page_content] | |
text_per_page[dctkey]= [page_text, text_from_images,text_from_tables, page_content] | |
#result = result.join(page_text).join(line_format).join(text_from_images).join(text_from_tables).join(page_content) | |
result = " " | |
for t in range(number_of_pages): | |
page = 'Page_'+str(t) | |
#result = result.join(map(str, text_per_page[page])) | |
for q in range(len(text_per_page[page])): | |
#print(f"{''.join(map(str, text_per_page[page][q]))}") | |
result = result + f"{''.join(map(str, text_per_page[page][q]))}" | |
return result | |
def create_dataframe_from_text(text): | |
data_dict = json.loads(text) | |
# Convert the dictionary to a Pandas DataFrame | |
df = pd.DataFrame([data_dict]) | |
return df | |
def create_dataframe_from_text_2(text): | |
# Convert text to a Python dictionary | |
data_dict = json.loads(text) | |
# Extract the 'transactions' data | |
transactions_data = data_dict.get('transactions', []) | |
# Convert the 'transactions' list of dictionaries to a Pandas DataFrame | |
df = pd.DataFrame(transactions_data) | |
return df | |
template="You are a helpful assistant that annalyses a bank statement annd provides answers" | |
system_message_prompt = SystemMessagePromptTemplate.from_template(template) | |
human_template= "{text}" | |
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template) | |
prompt_1 = """Loan status include details like Total Outstanding or Total Loan Amount, | |
Start Month, Tenure in Months, Rate of interest and EMI. | |
Extract the details from text from triple tick marks and return a JSON object ONLY with keys Total Loan Amount as Number, Start Month in format mmm-yyyy, Tenure in Months, ROI, EMI as Number. | |
Only return the JSON. | |
""" | |
prompt_template_1 = PromptTemplate.from_template( | |
prompt_1 + "```{loan_data} ```" | |
) | |
#prompt_template_1.format(loan_data=result.lower()) | |
prompt_2_temp = """Loan transaction details are the information of transaction happened during a period and contains | |
details like Month, EMI as monthly amount paid, Payment status as Paid or Unpaid, outstanding Balance after payment of EMI. | |
Return a table of ALL transactions in a pandas data frame object | |
1. COMBININNG monthly transactions for each month | |
2. WITHOUT missing rows for ANY month | |
3. with columns Month, EMI Paid, Payment Status, Interest Amount, Principal Amount, Balance Amount | |
from text in triple tick marks. | |
Just return JSON object with keys Month, EMI Paid, Payment Status, Interest Amount, Principal Amount, Balance Amount | |
ONLY return the JSON. | |
""" | |
prompt_2 = """Loan transaction details are the information of transaction happened during a period and contains | |
details like Month, EMI as monthly amount paid, Payment status as Paid or Unpaid, Interest Amount paid, outstanding Balance after payment of EMI. | |
Return a JSON object called `transactions` by | |
1. COMBININNG monthly transactions for each month | |
2. WITHOUT missing rows for ANY month | |
3. and get data for all the months | |
3. with keys Month, EMI Paid, Payment Status, Interest Amount, Principal Amount, Balance Amount | |
from text in triple tick marks. | |
ONLY return the JSON. | |
""" | |
prompt_template_2 = PromptTemplate.from_template( | |
prompt_2 + "```{response_1}{loan_data} ```" | |
#prompt_2 + "```{loan_data} ```" | |
) | |
#prompt_template_2.format(response_1 =response_1, loan_data=result.lower()) | |
if 'response' not in st.session_state: | |
st.session_state.stage = '' | |
def set_stage(response): | |
st.session_state.response = response | |
if st.button('Get Loan Details',type="primary"): | |
with st.spinner("π€ Operation in progress. Please wait! π€ "): | |
result = read_file_get_prompts(file_name) | |
#st.write(result.lower()) | |
response_1 = OpenAI().complete(prompt_template_1.format(loan_data=result.lower())) | |
st.table(create_dataframe_from_text(response_1.text)) | |
set_stage(response_1.text) | |
st.balloons() | |
async def get_completion(prompt_template, response="", data=""): | |
# Other code... | |
# Wait for completion of OpenAI().complete() | |
completion_result = await OpenAI().complete(prompt_template.format(response = st.session_state.response, loan_data=data.lower())) | |
return completion_result | |
if st.button('Get Loan Transactions', type="primary"): | |
with st.spinner("π€ Operation in progress. Please wait! π€ "): | |
result = read_file_get_prompts(file_name) | |
#st.write(result) | |
#st.write(result.lower()) | |
#response_1 = get_completion(prompt_template_1, "", result) | |
response_1_text = st.session_state.response | |
response_2 = OpenAI().complete(prompt_template_2.format(response_1=response_1_text, loan_data=result.lower())) | |
#st.write(response_2) | |
df = create_dataframe_from_text_2(response_2.text) | |
st.write(df.size) | |
st.table(create_dataframe_from_text_2(response_2.text)) | |
st.balloons() | |
st.caption("Made with β€οΈ by @ravi259. Credits to π€ Spaces for Hosting this ") | |