Spaces:
Sleeping
Sleeping
File size: 15,867 Bytes
776284b 73079fb a796d91 c549199 8446a87 73079fb 8ad3fb7 73079fb 8ad3fb7 73079fb 776284b a5bdb4f 73079fb 776284b 52d663a 776284b 73079fb 776284b 73079fb a6117d9 8ad3fb7 52d663a 0fc5105 52d663a 0fc5105 52d663a 4f0315f e164c02 52d663a c549199 1a3a6e0 c549199 52d663a 24d7dac 8ad3fb7 60e1df3 52d663a 24d7dac e9dca30 24d7dac 52d663a 24d7dac 52d663a 24d7dac c549199 8ad3fb7 60e1df3 15810cf 138222e 60e1df3 138222e 60e1df3 15810cf 60e1df3 52d663a 80621df 15810cf 52d663a 8557154 89be82d 8557154 a796d91 dd841de 52d663a 6ec2170 e164c02 138222e c549199 881a8f2 1a3a6e0 52d663a 8f4e121 e164c02 8557154 e164c02 dd841de 52d663a 56a1d9e 6ec2170 e164c02 8f4e121 881a8f2 c549199 26244d8 2a53640 dd841de 52d663a 776284b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
import easyocr as ocr #OCR
import streamlit as st #Web App
from PIL import Image #Image Processing
import numpy as np #Image Processing
# To read the PDF
import PyPDF2
# To analyze the PDF layout and extract text
from pdfminer.high_level import extract_pages, extract_text
from pdfminer.layout import LTTextContainer, LTChar, LTRect, LTFigure
# To extract text from tables in PDF
import pdfplumber
# To extract the images from the PDFs
from PIL import Image
from pdf2image import convert_from_path
# To perform OCR to extract text from images
import pytesseract
# To remove the additional created files
import os
import tiktoken
import streamlit as st
import pandas as pd
from io import StringIO
import time
import json
import openai
from langchain.prompts import PromptTemplate
from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
from llama_index.llms import OpenAI
# Create function to extract text
from langchain.prompts import PromptTemplate
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
AIMessagePromptTemplate,
HumanMessagePromptTemplate,
)
def text_extraction(element):
# Extracting the text from the in line text element
line_text = element.get_text()
# Find the formats of the text
# Initialize the list with all the formats appeared in the line of text
line_formats = []
for text_line in element:
if isinstance(text_line, LTTextContainer):
# Iterating through each character in the line of text
for character in text_line:
if isinstance(character, LTChar):
# Append the font name of the character
#line_formats.append(character.fontname)
# Append the font size of the character
#line_formats.append(character.size)
line_formats.append("")
# Find the unique font sizes and names in the line
format_per_line = list(set(line_formats))
# Return a tuple with the text in each line along with its format
return (line_text, format_per_line)
# Extracting tables from the page
def extract_table(pdf_path, page_num, table_num):
# Open the pdf file
pdf = pdfplumber.open(pdf_path)
# Find the examined page
table_page = pdf.pages[page_num]
# Extract the appropriate table
table = table_page.extract_tables()[table_num]
return table
# Convert table into appropriate fromat
def table_converter(table):
table_string = ''
# Iterate through each row of the table
for row_num in range(len(table)):
row = table[row_num]
# Remove the line breaker from the wrapted texts
cleaned_row = [item.replace('\n', ' ') if item is not None and '\n' in item else 'None' if item is None else item for item in row]
# Convert the table into a string
table_string+=('|'+'|'.join(cleaned_row)+'|'+'\n')
# Removing the last line break
table_string = table_string[:-1]
return table_string
# Create a function to check if the element is in any tables present in the page
def is_element_inside_any_table(element, page ,tables):
x0, y0up, x1, y1up = element.bbox
# Change the cordinates because the pdfminer counts from the botton to top of the page
y0 = page.bbox[3] - y1up
y1 = page.bbox[3] - y0up
for table in tables:
tx0, ty0, tx1, ty1 = table.bbox
if tx0 <= x0 <= x1 <= tx1 and ty0 <= y0 <= y1 <= ty1:
return True
return False
# Function to find the table for a given element
def find_table_for_element(element, page ,tables):
x0, y0up, x1, y1up = element.bbox
# Change the cordinates because the pdfminer counts from the botton to top of the page
y0 = page.bbox[3] - y1up
y1 = page.bbox[3] - y0up
for i, table in enumerate(tables):
tx0, ty0, tx1, ty1 = table.bbox
if tx0 <= x0 <= x1 <= tx1 and ty0 <= y0 <= y1 <= ty1:
return i # Return the index of the table
return None
# Create a function to crop the image elements from PDFs
def crop_image(element, pageObj):
# Get the coordinates to crop the image from PDF
[image_left, image_top, image_right, image_bottom] = [element.x0,element.y0,element.x1,element.y1]
# Crop the page using coordinates (left, bottom, right, top)
pageObj.mediabox.lower_left = (image_left, image_bottom)
pageObj.mediabox.upper_right = (image_right, image_top)
# Save the cropped page to a new PDF
cropped_pdf_writer = PyPDF2.PdfWriter()
cropped_pdf_writer.add_page(pageObj)
# Save the cropped PDF to a new file
with open('cropped_image.pdf', 'wb') as cropped_pdf_file:
cropped_pdf_writer.write(cropped_pdf_file)
# Create a function to convert the PDF to images
def convert_to_images(input_file,):
images = convert_from_path(input_file)
image = images[0]
output_file = 'PDF_image.png'
image.save(output_file, 'PNG')
# Create a function to read text from images
def image_to_text(image_path):
# Read the image
img = Image.open(image_path)
# Extract the text from the image
text = pytesseract.image_to_string(img)
return text
#title
st.title("Extract Loan details from PDF or Image")
#subtitle
st.markdown("## Loan detail extractor using `OpenAI` and `streamlit` - hosted on π€ Spaces")
st.markdown("Link to the app - [PDF to extract loadn details app on π€ Spaces](https://huggingface.co/spaces/ravi259/Loan-details-extraction-app)")
#image uploader
file_name = st.file_uploader(label = "Upload your PDF file here",type=['pdf','png','jpg','jpeg'])
print(file_name)
def read_file_get_prompts(file_name):
if file_name is not None:
st.write(file_name.name)
file_details = {"FileName":file_name.name,"FileType":file_name.type}
#st.write(file_details)
# Find the PDF path
pdf_path = file_name # '/content/data/'+file_name+".pdf"
#st.write(pdf_path)
#text_file_path = '/content/data/'+file_name+".txt"
# Create a pdf file object
#pdfFileObj = open(+pdf_path, 'rb')
# Create a pdf reader object
pdfReaded = PyPDF2.PdfReader(file_name)
# Create the dictionary to extract text from each image
text_per_page = {}
# Create a boolean variable for image detection
image_flag = False
number_of_pages = len(list(extract_pages(file_name)))
result = ''
# We extract the pages from the PDF
for pagenum, page in enumerate(extract_pages(file_name)):
# Initialize the variables needed for the text extraction from the page
pageObj = pdfReaded.pages[pagenum]
page_text = []
line_format = []
text_from_images = []
text_from_tables = []
page_content = []
# Initialize the number of the examined tables
table_in_page= -1
# Open the pdf file
pdf = pdfplumber.open(pdf_path)
# Find the examined page
page_tables = pdf.pages[pagenum]
# Find the number of tables in the page
tables = page_tables.find_tables()
if len(tables)!=0:
table_in_page = 0
# Extracting the tables of the page
for table_num in range(len(tables)):
# Extract the information of the table
table = extract_table(pdf_path, pagenum, table_num)
# Convert the table information in structured string format
table_string = table_converter(table)
# Append the table string into a list
text_from_tables.append(table_string)
# Find all the elements
page_elements = [(element.y1, element) for element in page._objs]
# Sort all the element as they appear in the page
page_elements.sort(key=lambda a: a[0], reverse=True)
# Find the elements that composed a page
for i,component in enumerate(page_elements):
# Extract the element of the page layout
element = component[1]
# Check the elements for tables
if table_in_page == -1:
pass
else:
if is_element_inside_any_table(element, page ,tables):
table_found = find_table_for_element(element,page ,tables)
if table_found == table_in_page and table_found != None:
page_content.append(text_from_tables[table_in_page])
#page_text.append('table')
#line_format.append('table')
table_in_page+=1
# Pass this iteration because the content of this element was extracted from the tables
continue
if not is_element_inside_any_table(element,page,tables):
# Check if the element is text element
if isinstance(element, LTTextContainer):
# Use the function to extract the text and format for each text element
(line_text, format_per_line) = text_extraction(element)
# Append the text of each line to the page text
page_text.append(line_text)
# Append the format for each line containing text
line_format.append(format_per_line)
page_content.append(line_text)
# Check the elements for images
if isinstance(element, LTFigure):
# Crop the image from PDF
crop_image(element, pageObj)
# Convert the croped pdf to image
convert_to_images('cropped_image.pdf')
# Extract the text from image
image_text = image_to_text('PDF_image.png')
image_text = "" # removed to remove the errors with image
text_from_images.append(image_text)
page_content.append(image_text)
# Add a placeholder in the text and format lists
#page_text.append('image')
#line_format.append('image')
# Update the flag for image detection
image_flag = True
# Create the key of the dictionary
dctkey = 'Page_'+str(pagenum)
# Add the list of list as value of the page key
#text_per_page[dctkey]= [page_text, line_format, text_from_images,text_from_tables, page_content]
text_per_page[dctkey]= [page_text, text_from_images,text_from_tables, page_content]
#result = result.join(page_text).join(line_format).join(text_from_images).join(text_from_tables).join(page_content)
result = " "
for t in range(number_of_pages):
page = 'Page_'+str(t)
#result = result.join(map(str, text_per_page[page]))
for q in range(len(text_per_page[page])):
#print(f"{''.join(map(str, text_per_page[page][q]))}")
result = result + f"{''.join(map(str, text_per_page[page][q]))}"
return result
def create_dataframe_from_text(text):
data_dict = json.loads(text)
# Convert the dictionary to a Pandas DataFrame
df = pd.DataFrame([data_dict])
return df
def create_dataframe_from_text_2(text):
# Convert text to a Python dictionary
data_dict = json.loads(text)
# Extract the 'transactions' data
transactions_data = data_dict.get('transactions', [])
# Convert the 'transactions' list of dictionaries to a Pandas DataFrame
df = pd.DataFrame(transactions_data)
return df
template="You are a helpful assistant that annalyses a bank statement annd provides answers"
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template= "{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
prompt_1 = """Loan status include details like Total Outstanding or Total Loan Amount,
Start Month, Tenure in Months, Rate of interest and EMI.
Extract the details from text from triple tick marks and return a JSON object ONLY with keys Total Loan Amount as Number, Start Month in format mmm-yyyy, Tenure in Months, ROI, EMI as Number.
Only return the JSON.
"""
prompt_template_1 = PromptTemplate.from_template(
prompt_1 + "```{loan_data} ```"
)
#prompt_template_1.format(loan_data=result.lower())
prompt_2_temp = """Loan transaction details are the information of transaction happened during a period and contains
details like Month, EMI as monthly amount paid, Payment status as Paid or Unpaid, outstanding Balance after payment of EMI.
Return a table of ALL transactions in a pandas data frame object
1. COMBININNG monthly transactions for each month
2. WITHOUT missing rows for ANY month
3. with columns Month, EMI Paid, Payment Status, Interest Amount, Principal Amount, Balance Amount
from text in triple tick marks.
Just return JSON object with keys Month, EMI Paid, Payment Status, Interest Amount, Principal Amount, Balance Amount
ONLY return the JSON.
"""
prompt_2 = """Loan transaction details are the information of transaction happened during a period and contains
details like Month, EMI as monthly amount paid, Payment status as Paid or Unpaid, Interest Amount paid, outstanding Balance after payment of EMI.
Return a JSON object called `transactions` by
1. COMBININNG monthly transactions for each month
2. WITHOUT missing rows for ANY month
3. and get data for all the months
3. with keys Month, EMI Paid, Payment Status, Interest Amount, Principal Amount, Balance Amount
from text in triple tick marks.
ONLY return the JSON.
"""
prompt_template_2 = PromptTemplate.from_template(
prompt_2 + "```{response_1}{loan_data} ```"
#prompt_2 + "```{loan_data} ```"
)
#prompt_template_2.format(response_1 =response_1, loan_data=result.lower())
if 'response' not in st.session_state:
st.session_state.stage = ''
def set_stage(response):
st.session_state.response = response
if st.button('Get Loan Details',type="primary"):
with st.spinner("π€ Operation in progress. Please wait! π€ "):
result = read_file_get_prompts(file_name)
#st.write(result.lower())
response_1 = OpenAI().complete(prompt_template_1.format(loan_data=result.lower()))
st.table(create_dataframe_from_text(response_1.text))
set_stage(response_1.text)
st.balloons()
async def get_completion(prompt_template, response="", data=""):
# Other code...
# Wait for completion of OpenAI().complete()
completion_result = await OpenAI().complete(prompt_template.format(response = st.session_state.response, loan_data=data.lower()))
return completion_result
if st.button('Get Loan Transactions', type="primary"):
with st.spinner("π€ Operation in progress. Please wait! π€ "):
result = read_file_get_prompts(file_name)
#st.write(result)
#st.write(result.lower())
#response_1 = get_completion(prompt_template_1, "", result)
response_1_text = st.session_state.response
response_2 = OpenAI().complete(prompt_template_2.format(response_1=response_1_text, loan_data=result.lower()))
#st.write(response_2)
df = create_dataframe_from_text_2(response_2.text)
st.write(df.size)
st.table(create_dataframe_from_text_2(response_2.text))
st.balloons()
st.caption("Made with β€οΈ by @ravi259. Credits to π€ Spaces for Hosting this ")
|