ravi259 commited on
Commit
1a3a6e0
Β·
1 Parent(s): a8c4fe6
Files changed (1) hide show
  1. app.py +5 -7
app.py CHANGED
@@ -299,14 +299,13 @@ def create_dataframe_from_text_2(text):
299
  data_dict = json.loads(text)
300
 
301
  # Extract the 'transactions' data
302
- transactions_data = data_dict.get('Loan Transaction Details', [])
303
 
304
  # Convert the 'transactions' list of dictionaries to a Pandas DataFrame
305
  df = pd.DataFrame(transactions_data)
306
 
307
  return df
308
 
309
-
310
  template="You are a helpful assistant that annalyses a bank statement annd provides answers"
311
  system_message_prompt = SystemMessagePromptTemplate.from_template(template)
312
  human_template= "{text}"
@@ -345,8 +344,7 @@ ONLY return the JSON.
345
  prompt_2 = """Loan transaction details are the information of transaction happened during a period and contains
346
  details like Month, EMI as monthly amount paid, Payment status as Paid or Unpaid, Interest Amount paid, outstanding Balance after payment of EMI.
347
 
348
-
349
- Return a JSON object
350
 
351
  1. COMBININNG monthly transactions for each month
352
  2. WITHOUT missing rows for ANY month
@@ -364,7 +362,6 @@ prompt_template_2 = PromptTemplate.from_template(
364
  )
365
  #prompt_template_2.format(response_1 =response_1, loan_data=result.lower())
366
 
367
-
368
  if st.button('Get Loan Details',type="primary"):
369
  with st.spinner("πŸ€– Operation in progress. Please wait! πŸ€– "):
370
  result = read_file_get_prompts(file_name)
@@ -372,7 +369,8 @@ if st.button('Get Loan Details',type="primary"):
372
  #st.write(result.lower())
373
  response_1 = OpenAI().complete(prompt_template_1.format(loan_data=result.lower()))
374
  st.table(create_dataframe_from_text(response_1.text))
375
-
 
376
  st.balloons()
377
 
378
  async def get_completion(prompt_template, response="", data=""):
@@ -389,7 +387,7 @@ if st.button('Get Loan Transactions', type="primary"):
389
  #st.write(result.lower())
390
  #response_1 = get_completion(prompt_template_1, "", result)
391
 
392
- response_2 = OpenAI().complete(prompt_template_2.format(response_1=response_1.text, loan_data=result.lower()))
393
  #st.write(response_2)
394
  st.table(create_dataframe_from_text_2(response_2.text))
395
 
 
299
  data_dict = json.loads(text)
300
 
301
  # Extract the 'transactions' data
302
+ transactions_data = data_dict.get('transactions', [])
303
 
304
  # Convert the 'transactions' list of dictionaries to a Pandas DataFrame
305
  df = pd.DataFrame(transactions_data)
306
 
307
  return df
308
 
 
309
  template="You are a helpful assistant that annalyses a bank statement annd provides answers"
310
  system_message_prompt = SystemMessagePromptTemplate.from_template(template)
311
  human_template= "{text}"
 
344
  prompt_2 = """Loan transaction details are the information of transaction happened during a period and contains
345
  details like Month, EMI as monthly amount paid, Payment status as Paid or Unpaid, Interest Amount paid, outstanding Balance after payment of EMI.
346
 
347
+ Return a JSON object called transactions by
 
348
 
349
  1. COMBININNG monthly transactions for each month
350
  2. WITHOUT missing rows for ANY month
 
362
  )
363
  #prompt_template_2.format(response_1 =response_1, loan_data=result.lower())
364
 
 
365
  if st.button('Get Loan Details',type="primary"):
366
  with st.spinner("πŸ€– Operation in progress. Please wait! πŸ€– "):
367
  result = read_file_get_prompts(file_name)
 
369
  #st.write(result.lower())
370
  response_1 = OpenAI().complete(prompt_template_1.format(loan_data=result.lower()))
371
  st.table(create_dataframe_from_text(response_1.text))
372
+ text_result = response_1.text
373
+
374
  st.balloons()
375
 
376
  async def get_completion(prompt_template, response="", data=""):
 
387
  #st.write(result.lower())
388
  #response_1 = get_completion(prompt_template_1, "", result)
389
 
390
+ response_2 = OpenAI().complete(prompt_template_2.format(response_1=text_result, loan_data=result.lower()))
391
  #st.write(response_2)
392
  st.table(create_dataframe_from_text_2(response_2.text))
393