Spaces:
Sleeping
Sleeping
Rami
commited on
Commit
·
5f8b3ec
1
Parent(s):
fd1fd02
CSV DATA Added
Browse files- app.py +57 -62
- app_csv.py → app1.py +62 -57
app.py
CHANGED
@@ -1,16 +1,12 @@
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
-
import psycopg2 as pgsql
|
4 |
import pandas as pd
|
5 |
import plotly.express as px
|
6 |
-
from dotenv import load_dotenv
|
7 |
import google.generativeai as genai
|
8 |
-
|
9 |
-
# Load environment variables
|
10 |
-
load_dotenv()
|
11 |
|
12 |
# Configure Genai Key
|
13 |
-
genai.configure(api_key=os.
|
14 |
|
15 |
# Function to load Google Gemini Model and provide queries as response
|
16 |
def get_gemini_response(question, prompt):
|
@@ -18,78 +14,83 @@ def get_gemini_response(question, prompt):
|
|
18 |
response = model.generate_content([prompt[0], question])
|
19 |
return response.text.strip()
|
20 |
|
21 |
-
# Function to
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
try:
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
colnames = [desc[0] for desc in cur.description] if cur.description else []
|
29 |
-
conn.commit()
|
30 |
-
cur.close()
|
31 |
-
conn.close()
|
32 |
-
df = pd.DataFrame(rows, columns=colnames)
|
33 |
-
|
34 |
-
# Convert 'price' column to numeric if it exists
|
35 |
-
if 'price' in df.columns:
|
36 |
-
df['price'] = pd.to_numeric(df['price'], errors='coerce')
|
37 |
-
|
38 |
-
return df
|
39 |
except Exception as e:
|
40 |
st.error(f"An error occurred: {e}")
|
41 |
return pd.DataFrame()
|
42 |
|
43 |
-
# Define your PostgreSQL connection parameters
|
44 |
-
db_params = {
|
45 |
-
'dbname': 'GeminiPro',
|
46 |
-
'user': 'postgres',
|
47 |
-
'password': 'root',
|
48 |
-
'host': 'localhost',
|
49 |
-
'port': 5432
|
50 |
-
}
|
51 |
-
|
52 |
# Define Your Prompt
|
53 |
prompt = [
|
54 |
"""
|
55 |
-
You are an expert in converting English questions to
|
56 |
-
The
|
57 |
id, product_name, category, price, stock_quantity, supplier, last_restock_date.
|
58 |
|
59 |
Examples:
|
60 |
- How many products do we have in total?
|
61 |
-
The
|
62 |
- What are all the products in the Electronics category?
|
63 |
-
The
|
64 |
|
65 |
-
The
|
66 |
"""
|
67 |
]
|
68 |
|
69 |
# Streamlit App
|
70 |
-
st.set_page_config(page_title="
|
|
|
|
|
|
|
71 |
|
72 |
# Sidebar for user input
|
73 |
-
st.sidebar.title("
|
74 |
question = st.sidebar.text_area("Enter your question:", key="input")
|
75 |
submit = st.sidebar.button("Ask Me")
|
76 |
|
77 |
# Main content area
|
78 |
-
st.title("
|
79 |
|
80 |
if submit:
|
81 |
-
with st.spinner("Generating and fetching data..."):
|
82 |
-
|
83 |
-
|
84 |
|
85 |
-
|
86 |
|
87 |
-
if not
|
88 |
st.success("Query executed successfully!")
|
89 |
|
90 |
# Display data in a table
|
91 |
st.subheader("Data Table")
|
92 |
-
st.dataframe(
|
93 |
|
94 |
# Create visualizations based on the data
|
95 |
st.subheader("Data Visualizations")
|
@@ -97,25 +98,24 @@ if submit:
|
|
97 |
col1, col2 = st.columns(2)
|
98 |
|
99 |
with col1:
|
100 |
-
if 'price' in
|
101 |
-
fig = px.histogram(
|
102 |
st.plotly_chart(fig, use_container_width=True)
|
103 |
|
104 |
-
if 'category' in
|
105 |
-
category_counts =
|
106 |
fig = px.pie(values=category_counts.values, names=category_counts.index, title='Products by Category')
|
107 |
st.plotly_chart(fig, use_container_width=True)
|
108 |
|
109 |
with col2:
|
110 |
-
if 'last_restock_date' in
|
111 |
-
|
112 |
-
|
113 |
-
restock_counts = df['restock_month'].value_counts().sort_index()
|
114 |
fig = px.line(x=restock_counts.index.astype(str), y=restock_counts.values, title='Restocking Trend')
|
115 |
st.plotly_chart(fig, use_container_width=True)
|
116 |
|
117 |
-
if 'product_name' in
|
118 |
-
top_prices =
|
119 |
fig = px.bar(top_prices, x='product_name', y='price', title='Top 10 Most Expensive Products')
|
120 |
st.plotly_chart(fig, use_container_width=True)
|
121 |
else:
|
@@ -126,9 +126,4 @@ else:
|
|
126 |
|
127 |
# Footer
|
128 |
st.sidebar.markdown("---")
|
129 |
-
st.sidebar.
|
130 |
-
"1.What are all the products in the Electronics category?\n"
|
131 |
-
"2.What is the average price of products in each category?\n"
|
132 |
-
"3.Which products have a stock quantity less than 30?\n"
|
133 |
-
"4.What are the top 5 most expensive products?")
|
134 |
-
st.sidebar.warning("CopyRights@AutomatiX - Powered by Streamlit and Google Gemini")
|
|
|
1 |
import streamlit as st
|
2 |
import os
|
|
|
3 |
import pandas as pd
|
4 |
import plotly.express as px
|
|
|
5 |
import google.generativeai as genai
|
6 |
+
from io import StringIO
|
|
|
|
|
7 |
|
8 |
# Configure Genai Key
|
9 |
+
genai.configure(api_key=os.environ.get("GOOGLE_API_KEY"))
|
10 |
|
11 |
# Function to load Google Gemini Model and provide queries as response
|
12 |
def get_gemini_response(question, prompt):
|
|
|
14 |
response = model.generate_content([prompt[0], question])
|
15 |
return response.text.strip()
|
16 |
|
17 |
+
# Function to load data from CSV
|
18 |
+
@st.cache_data
|
19 |
+
def load_data():
|
20 |
+
# This is a sample CSV content. In practice, you'd read this from a file.
|
21 |
+
csv_content = """
|
22 |
+
id,product_name,category,price,stock_quantity,supplier,last_restock_date
|
23 |
+
1,Cotton T-Shirt,Clothing,19.99,100,FashionCo,2024-03-01
|
24 |
+
2,Denim Jeans,Clothing,49.99,75,DenimWorld,2024-02-15
|
25 |
+
3,Running Shoes,Footwear,79.99,50,SportyFeet,2024-03-10
|
26 |
+
4,Leather Wallet,Accessories,29.99,30,LeatherCrafts,2024-01-20
|
27 |
+
5,Smartphone Case,Electronics,14.99,200,TechProtect,2024-03-05
|
28 |
+
6,Coffee Maker,Appliances,89.99,25,KitchenTech,2024-02-28
|
29 |
+
7,Yoga Mat,Sports,24.99,40,YogaEssentials,2024-03-15
|
30 |
+
8,Backpack,Bags,39.99,60,TravelGear,2024-02-10
|
31 |
+
9,Sunglasses,Accessories,59.99,35,ShadesMaster,2024-03-20
|
32 |
+
10,Bluetooth Speaker,Electronics,69.99,45,SoundWave,2024-01-30
|
33 |
+
"""
|
34 |
+
df = pd.read_csv(StringIO(csv_content))
|
35 |
+
df['price'] = pd.to_numeric(df['price'], errors='coerce')
|
36 |
+
df['last_restock_date'] = pd.to_datetime(df['last_restock_date'], errors='coerce')
|
37 |
+
return df
|
38 |
+
|
39 |
+
# Function to execute pandas query
|
40 |
+
def execute_pandas_query(df, query):
|
41 |
try:
|
42 |
+
# This is a very simple and unsafe way to execute queries.
|
43 |
+
# In a real application, you'd need to parse the SQL and translate it to pandas operations.
|
44 |
+
result = eval(f"df.{query}")
|
45 |
+
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
except Exception as e:
|
47 |
st.error(f"An error occurred: {e}")
|
48 |
return pd.DataFrame()
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
# Define Your Prompt
|
51 |
prompt = [
|
52 |
"""
|
53 |
+
You are an expert in converting English questions to pandas DataFrame operations!
|
54 |
+
The DataFrame 'df' has the following columns:
|
55 |
id, product_name, category, price, stock_quantity, supplier, last_restock_date.
|
56 |
|
57 |
Examples:
|
58 |
- How many products do we have in total?
|
59 |
+
The pandas operation will be: len()
|
60 |
- What are all the products in the Electronics category?
|
61 |
+
The pandas operation will be: query("category == 'Electronics'")
|
62 |
|
63 |
+
The pandas operation should be a valid Python expression that can be applied to a DataFrame 'df'.
|
64 |
"""
|
65 |
]
|
66 |
|
67 |
# Streamlit App
|
68 |
+
st.set_page_config(page_title="Department Store Analytics", layout="wide")
|
69 |
+
|
70 |
+
# Load data
|
71 |
+
df = load_data()
|
72 |
|
73 |
# Sidebar for user input
|
74 |
+
st.sidebar.title("Department Store Query Interface")
|
75 |
question = st.sidebar.text_area("Enter your question:", key="input")
|
76 |
submit = st.sidebar.button("Ask Me")
|
77 |
|
78 |
# Main content area
|
79 |
+
st.title("Department Store Dashboard")
|
80 |
|
81 |
if submit:
|
82 |
+
with st.spinner("Generating query and fetching data..."):
|
83 |
+
pandas_query = get_gemini_response(question, prompt)
|
84 |
+
st.code(pandas_query, language="python")
|
85 |
|
86 |
+
result_df = execute_pandas_query(df, pandas_query)
|
87 |
|
88 |
+
if not result_df.empty:
|
89 |
st.success("Query executed successfully!")
|
90 |
|
91 |
# Display data in a table
|
92 |
st.subheader("Data Table")
|
93 |
+
st.dataframe(result_df)
|
94 |
|
95 |
# Create visualizations based on the data
|
96 |
st.subheader("Data Visualizations")
|
|
|
98 |
col1, col2 = st.columns(2)
|
99 |
|
100 |
with col1:
|
101 |
+
if 'price' in result_df.columns and result_df['price'].notna().any():
|
102 |
+
fig = px.histogram(result_df, x='price', title='Price Distribution')
|
103 |
st.plotly_chart(fig, use_container_width=True)
|
104 |
|
105 |
+
if 'category' in result_df.columns:
|
106 |
+
category_counts = result_df['category'].value_counts()
|
107 |
fig = px.pie(values=category_counts.values, names=category_counts.index, title='Products by Category')
|
108 |
st.plotly_chart(fig, use_container_width=True)
|
109 |
|
110 |
with col2:
|
111 |
+
if 'last_restock_date' in result_df.columns:
|
112 |
+
result_df['restock_month'] = result_df['last_restock_date'].dt.to_period('M')
|
113 |
+
restock_counts = result_df['restock_month'].value_counts().sort_index()
|
|
|
114 |
fig = px.line(x=restock_counts.index.astype(str), y=restock_counts.values, title='Restocking Trend')
|
115 |
st.plotly_chart(fig, use_container_width=True)
|
116 |
|
117 |
+
if 'product_name' in result_df.columns and 'price' in result_df.columns and result_df['price'].notna().any():
|
118 |
+
top_prices = result_df.sort_values('price', ascending=False).head(10)
|
119 |
fig = px.bar(top_prices, x='product_name', y='price', title='Top 10 Most Expensive Products')
|
120 |
st.plotly_chart(fig, use_container_width=True)
|
121 |
else:
|
|
|
126 |
|
127 |
# Footer
|
128 |
st.sidebar.markdown("---")
|
129 |
+
st.sidebar.warning("AutomatiX - Department Store Analytics - Powered by Streamlit and Google Gemini")
|
|
|
|
|
|
|
|
|
|
app_csv.py → app1.py
RENAMED
@@ -1,12 +1,16 @@
|
|
1 |
import streamlit as st
|
2 |
import os
|
|
|
3 |
import pandas as pd
|
4 |
import plotly.express as px
|
|
|
5 |
import google.generativeai as genai
|
6 |
-
|
|
|
|
|
7 |
|
8 |
# Configure Genai Key
|
9 |
-
genai.configure(api_key=os.
|
10 |
|
11 |
# Function to load Google Gemini Model and provide queries as response
|
12 |
def get_gemini_response(question, prompt):
|
@@ -14,83 +18,78 @@ def get_gemini_response(question, prompt):
|
|
14 |
response = model.generate_content([prompt[0], question])
|
15 |
return response.text.strip()
|
16 |
|
17 |
-
# Function to
|
18 |
-
|
19 |
-
def load_data():
|
20 |
-
# This is a sample CSV content. In practice, you'd read this from a file.
|
21 |
-
csv_content = """
|
22 |
-
id,product_name,category,price,stock_quantity,supplier,last_restock_date
|
23 |
-
1,Cotton T-Shirt,Clothing,19.99,100,FashionCo,2024-03-01
|
24 |
-
2,Denim Jeans,Clothing,49.99,75,DenimWorld,2024-02-15
|
25 |
-
3,Running Shoes,Footwear,79.99,50,SportyFeet,2024-03-10
|
26 |
-
4,Leather Wallet,Accessories,29.99,30,LeatherCrafts,2024-01-20
|
27 |
-
5,Smartphone Case,Electronics,14.99,200,TechProtect,2024-03-05
|
28 |
-
6,Coffee Maker,Appliances,89.99,25,KitchenTech,2024-02-28
|
29 |
-
7,Yoga Mat,Sports,24.99,40,YogaEssentials,2024-03-15
|
30 |
-
8,Backpack,Bags,39.99,60,TravelGear,2024-02-10
|
31 |
-
9,Sunglasses,Accessories,59.99,35,ShadesMaster,2024-03-20
|
32 |
-
10,Bluetooth Speaker,Electronics,69.99,45,SoundWave,2024-01-30
|
33 |
-
"""
|
34 |
-
df = pd.read_csv(StringIO(csv_content))
|
35 |
-
df['price'] = pd.to_numeric(df['price'], errors='coerce')
|
36 |
-
df['last_restock_date'] = pd.to_datetime(df['last_restock_date'], errors='coerce')
|
37 |
-
return df
|
38 |
-
|
39 |
-
# Function to execute pandas query
|
40 |
-
def execute_pandas_query(df, query):
|
41 |
try:
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
except Exception as e:
|
47 |
st.error(f"An error occurred: {e}")
|
48 |
return pd.DataFrame()
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
# Define Your Prompt
|
51 |
prompt = [
|
52 |
"""
|
53 |
-
You are an expert in converting English questions to
|
54 |
-
The
|
55 |
id, product_name, category, price, stock_quantity, supplier, last_restock_date.
|
56 |
|
57 |
Examples:
|
58 |
- How many products do we have in total?
|
59 |
-
The
|
60 |
- What are all the products in the Electronics category?
|
61 |
-
The
|
62 |
|
63 |
-
The
|
64 |
"""
|
65 |
]
|
66 |
|
67 |
# Streamlit App
|
68 |
-
st.set_page_config(page_title="Department Store Analytics", layout="wide")
|
69 |
-
|
70 |
-
# Load data
|
71 |
-
df = load_data()
|
72 |
|
73 |
# Sidebar for user input
|
74 |
-
st.sidebar.title("Department Store
|
75 |
question = st.sidebar.text_area("Enter your question:", key="input")
|
76 |
submit = st.sidebar.button("Ask Me")
|
77 |
|
78 |
# Main content area
|
79 |
-
st.title("Department Store Dashboard")
|
80 |
|
81 |
if submit:
|
82 |
-
with st.spinner("Generating
|
83 |
-
|
84 |
-
st.code(
|
85 |
|
86 |
-
|
87 |
|
88 |
-
if not
|
89 |
st.success("Query executed successfully!")
|
90 |
|
91 |
# Display data in a table
|
92 |
st.subheader("Data Table")
|
93 |
-
st.dataframe(
|
94 |
|
95 |
# Create visualizations based on the data
|
96 |
st.subheader("Data Visualizations")
|
@@ -98,24 +97,25 @@ if submit:
|
|
98 |
col1, col2 = st.columns(2)
|
99 |
|
100 |
with col1:
|
101 |
-
if 'price' in
|
102 |
-
fig = px.histogram(
|
103 |
st.plotly_chart(fig, use_container_width=True)
|
104 |
|
105 |
-
if 'category' in
|
106 |
-
category_counts =
|
107 |
fig = px.pie(values=category_counts.values, names=category_counts.index, title='Products by Category')
|
108 |
st.plotly_chart(fig, use_container_width=True)
|
109 |
|
110 |
with col2:
|
111 |
-
if 'last_restock_date' in
|
112 |
-
|
113 |
-
|
|
|
114 |
fig = px.line(x=restock_counts.index.astype(str), y=restock_counts.values, title='Restocking Trend')
|
115 |
st.plotly_chart(fig, use_container_width=True)
|
116 |
|
117 |
-
if 'product_name' in
|
118 |
-
top_prices =
|
119 |
fig = px.bar(top_prices, x='product_name', y='price', title='Top 10 Most Expensive Products')
|
120 |
st.plotly_chart(fig, use_container_width=True)
|
121 |
else:
|
@@ -126,4 +126,9 @@ else:
|
|
126 |
|
127 |
# Footer
|
128 |
st.sidebar.markdown("---")
|
129 |
-
st.sidebar.
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
+
import psycopg2 as pgsql
|
4 |
import pandas as pd
|
5 |
import plotly.express as px
|
6 |
+
from dotenv import load_dotenv
|
7 |
import google.generativeai as genai
|
8 |
+
|
9 |
+
# Load environment variables
|
10 |
+
load_dotenv()
|
11 |
|
12 |
# Configure Genai Key
|
13 |
+
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
14 |
|
15 |
# Function to load Google Gemini Model and provide queries as response
|
16 |
def get_gemini_response(question, prompt):
|
|
|
18 |
response = model.generate_content([prompt[0], question])
|
19 |
return response.text.strip()
|
20 |
|
21 |
+
# Function to retrieve query from the database
|
22 |
+
def read_sql_query(sql, db_params):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
try:
|
24 |
+
conn = pgsql.connect(**db_params)
|
25 |
+
cur = conn.cursor()
|
26 |
+
cur.execute(sql)
|
27 |
+
rows = cur.fetchall()
|
28 |
+
colnames = [desc[0] for desc in cur.description] if cur.description else []
|
29 |
+
conn.commit()
|
30 |
+
cur.close()
|
31 |
+
conn.close()
|
32 |
+
df = pd.DataFrame(rows, columns=colnames)
|
33 |
+
|
34 |
+
# Convert 'price' column to numeric if it exists
|
35 |
+
if 'price' in df.columns:
|
36 |
+
df['price'] = pd.to_numeric(df['price'], errors='coerce')
|
37 |
+
|
38 |
+
return df
|
39 |
except Exception as e:
|
40 |
st.error(f"An error occurred: {e}")
|
41 |
return pd.DataFrame()
|
42 |
|
43 |
+
# Define your PostgreSQL connection parameters
|
44 |
+
db_params = {
|
45 |
+
'dbname': 'GeminiPro',
|
46 |
+
'user': 'postgres',
|
47 |
+
'password': 'root',
|
48 |
+
'host': 'localhost',
|
49 |
+
'port': 5432
|
50 |
+
}
|
51 |
+
|
52 |
# Define Your Prompt
|
53 |
prompt = [
|
54 |
"""
|
55 |
+
You are an expert in converting English questions to SQL queries!
|
56 |
+
The SQL database has a table named 'department_store' with the following columns:
|
57 |
id, product_name, category, price, stock_quantity, supplier, last_restock_date.
|
58 |
|
59 |
Examples:
|
60 |
- How many products do we have in total?
|
61 |
+
The SQL command will be: SELECT COUNT(*) FROM department_store;
|
62 |
- What are all the products in the Electronics category?
|
63 |
+
The SQL command will be: SELECT * FROM department_store WHERE category = 'Electronics';
|
64 |
|
65 |
+
The SQL code should not include backticks and should not start with the word 'SQL'.
|
66 |
"""
|
67 |
]
|
68 |
|
69 |
# Streamlit App
|
70 |
+
st.set_page_config(page_title="AutomatiX - Department Store Analytics", layout="wide")
|
|
|
|
|
|
|
71 |
|
72 |
# Sidebar for user input
|
73 |
+
st.sidebar.title("AutomatiX - Department Store Chat Interface")
|
74 |
question = st.sidebar.text_area("Enter your question:", key="input")
|
75 |
submit = st.sidebar.button("Ask Me")
|
76 |
|
77 |
# Main content area
|
78 |
+
st.title("AutomatiX - Department Store Dashboard")
|
79 |
|
80 |
if submit:
|
81 |
+
with st.spinner("Generating and fetching data..."):
|
82 |
+
sql_query = get_gemini_response(question, prompt)
|
83 |
+
# st.code(sql_query, language="sql")
|
84 |
|
85 |
+
df = read_sql_query(sql_query, db_params)
|
86 |
|
87 |
+
if not df.empty:
|
88 |
st.success("Query executed successfully!")
|
89 |
|
90 |
# Display data in a table
|
91 |
st.subheader("Data Table")
|
92 |
+
st.dataframe(df)
|
93 |
|
94 |
# Create visualizations based on the data
|
95 |
st.subheader("Data Visualizations")
|
|
|
97 |
col1, col2 = st.columns(2)
|
98 |
|
99 |
with col1:
|
100 |
+
if 'price' in df.columns and df['price'].notna().any():
|
101 |
+
fig = px.histogram(df, x='price', title='Price Distribution')
|
102 |
st.plotly_chart(fig, use_container_width=True)
|
103 |
|
104 |
+
if 'category' in df.columns:
|
105 |
+
category_counts = df['category'].value_counts()
|
106 |
fig = px.pie(values=category_counts.values, names=category_counts.index, title='Products by Category')
|
107 |
st.plotly_chart(fig, use_container_width=True)
|
108 |
|
109 |
with col2:
|
110 |
+
if 'last_restock_date' in df.columns:
|
111 |
+
df['last_restock_date'] = pd.to_datetime(df['last_restock_date'], errors='coerce')
|
112 |
+
df['restock_month'] = df['last_restock_date'].dt.to_period('M')
|
113 |
+
restock_counts = df['restock_month'].value_counts().sort_index()
|
114 |
fig = px.line(x=restock_counts.index.astype(str), y=restock_counts.values, title='Restocking Trend')
|
115 |
st.plotly_chart(fig, use_container_width=True)
|
116 |
|
117 |
+
if 'product_name' in df.columns and 'price' in df.columns and df['price'].notna().any():
|
118 |
+
top_prices = df.sort_values('price', ascending=False).head(10)
|
119 |
fig = px.bar(top_prices, x='product_name', y='price', title='Top 10 Most Expensive Products')
|
120 |
st.plotly_chart(fig, use_container_width=True)
|
121 |
else:
|
|
|
126 |
|
127 |
# Footer
|
128 |
st.sidebar.markdown("---")
|
129 |
+
st.sidebar.info("You can ask questions like:\n"
|
130 |
+
"1.What are all the products in the Electronics category?\n"
|
131 |
+
"2.What is the average price of products in each category?\n"
|
132 |
+
"3.Which products have a stock quantity less than 30?\n"
|
133 |
+
"4.What are the top 5 most expensive products?")
|
134 |
+
st.sidebar.warning("CopyRights@AutomatiX - Powered by Streamlit and Google Gemini")
|