Rami commited on
Commit
fd1fd02
·
1 Parent(s): 8c34bef

CSV DATA Added

Browse files
Files changed (1) hide show
  1. app_csv.py +129 -0
app_csv.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ import pandas as pd
4
+ import plotly.express as px
5
+ import google.generativeai as genai
6
+ from io import StringIO
7
+
8
+ # Configure Genai Key
9
+ genai.configure(api_key=os.environ.get("GOOGLE_API_KEY"))
10
+
11
+ # Function to load Google Gemini Model and provide queries as response
12
+ def get_gemini_response(question, prompt):
13
+ model = genai.GenerativeModel('gemini-pro')
14
+ response = model.generate_content([prompt[0], question])
15
+ return response.text.strip()
16
+
17
+ # Function to load data from CSV
18
+ @st.cache_data
19
+ def load_data():
20
+ # This is a sample CSV content. In practice, you'd read this from a file.
21
+ csv_content = """
22
+ id,product_name,category,price,stock_quantity,supplier,last_restock_date
23
+ 1,Cotton T-Shirt,Clothing,19.99,100,FashionCo,2024-03-01
24
+ 2,Denim Jeans,Clothing,49.99,75,DenimWorld,2024-02-15
25
+ 3,Running Shoes,Footwear,79.99,50,SportyFeet,2024-03-10
26
+ 4,Leather Wallet,Accessories,29.99,30,LeatherCrafts,2024-01-20
27
+ 5,Smartphone Case,Electronics,14.99,200,TechProtect,2024-03-05
28
+ 6,Coffee Maker,Appliances,89.99,25,KitchenTech,2024-02-28
29
+ 7,Yoga Mat,Sports,24.99,40,YogaEssentials,2024-03-15
30
+ 8,Backpack,Bags,39.99,60,TravelGear,2024-02-10
31
+ 9,Sunglasses,Accessories,59.99,35,ShadesMaster,2024-03-20
32
+ 10,Bluetooth Speaker,Electronics,69.99,45,SoundWave,2024-01-30
33
+ """
34
+ df = pd.read_csv(StringIO(csv_content))
35
+ df['price'] = pd.to_numeric(df['price'], errors='coerce')
36
+ df['last_restock_date'] = pd.to_datetime(df['last_restock_date'], errors='coerce')
37
+ return df
38
+
39
+ # Function to execute pandas query
40
+ def execute_pandas_query(df, query):
41
+ try:
42
+ # This is a very simple and unsafe way to execute queries.
43
+ # In a real application, you'd need to parse the SQL and translate it to pandas operations.
44
+ result = eval(f"df.{query}")
45
+ return result
46
+ except Exception as e:
47
+ st.error(f"An error occurred: {e}")
48
+ return pd.DataFrame()
49
+
50
+ # Define Your Prompt
51
+ prompt = [
52
+ """
53
+ You are an expert in converting English questions to pandas DataFrame operations!
54
+ The DataFrame 'df' has the following columns:
55
+ id, product_name, category, price, stock_quantity, supplier, last_restock_date.
56
+
57
+ Examples:
58
+ - How many products do we have in total?
59
+ The pandas operation will be: len()
60
+ - What are all the products in the Electronics category?
61
+ The pandas operation will be: query("category == 'Electronics'")
62
+
63
+ The pandas operation should be a valid Python expression that can be applied to a DataFrame 'df'.
64
+ """
65
+ ]
66
+
67
+ # Streamlit App
68
+ st.set_page_config(page_title="Department Store Analytics", layout="wide")
69
+
70
+ # Load data
71
+ df = load_data()
72
+
73
+ # Sidebar for user input
74
+ st.sidebar.title("Department Store Query Interface")
75
+ question = st.sidebar.text_area("Enter your question:", key="input")
76
+ submit = st.sidebar.button("Ask Me")
77
+
78
+ # Main content area
79
+ st.title("Department Store Dashboard")
80
+
81
+ if submit:
82
+ with st.spinner("Generating query and fetching data..."):
83
+ pandas_query = get_gemini_response(question, prompt)
84
+ st.code(pandas_query, language="python")
85
+
86
+ result_df = execute_pandas_query(df, pandas_query)
87
+
88
+ if not result_df.empty:
89
+ st.success("Query executed successfully!")
90
+
91
+ # Display data in a table
92
+ st.subheader("Data Table")
93
+ st.dataframe(result_df)
94
+
95
+ # Create visualizations based on the data
96
+ st.subheader("Data Visualizations")
97
+
98
+ col1, col2 = st.columns(2)
99
+
100
+ with col1:
101
+ if 'price' in result_df.columns and result_df['price'].notna().any():
102
+ fig = px.histogram(result_df, x='price', title='Price Distribution')
103
+ st.plotly_chart(fig, use_container_width=True)
104
+
105
+ if 'category' in result_df.columns:
106
+ category_counts = result_df['category'].value_counts()
107
+ fig = px.pie(values=category_counts.values, names=category_counts.index, title='Products by Category')
108
+ st.plotly_chart(fig, use_container_width=True)
109
+
110
+ with col2:
111
+ if 'last_restock_date' in result_df.columns:
112
+ result_df['restock_month'] = result_df['last_restock_date'].dt.to_period('M')
113
+ restock_counts = result_df['restock_month'].value_counts().sort_index()
114
+ fig = px.line(x=restock_counts.index.astype(str), y=restock_counts.values, title='Restocking Trend')
115
+ st.plotly_chart(fig, use_container_width=True)
116
+
117
+ if 'product_name' in result_df.columns and 'price' in result_df.columns and result_df['price'].notna().any():
118
+ top_prices = result_df.sort_values('price', ascending=False).head(10)
119
+ fig = px.bar(top_prices, x='product_name', y='price', title='Top 10 Most Expensive Products')
120
+ st.plotly_chart(fig, use_container_width=True)
121
+ else:
122
+ st.warning("No data returned from the query.")
123
+
124
+ else:
125
+ st.info("Enter a question and click 'Ask Me' to get started!")
126
+
127
+ # Footer
128
+ st.sidebar.markdown("---")
129
+ st.sidebar.warning("AutomatiX - Department Store Analytics - Powered by Streamlit and Google Gemini")