AutoDocVerify / app.py
rajsecrets0's picture
Create app.py
7b76e52 verified
raw
history blame
6.83 kB
import streamlit as st
import base64
import requests
from PIL import Image, ImageDraw
from io import BytesIO
import fitz # PyMuPDF
import time
import os
# Configuration
GEMINI_API_KEY = st.secrets["GEMINI_API_KEY"]
GEMINI_MODEL = "gemini-1.5-flash" # Verify with Gemini API documentation
DOCUMENT_TYPES = ["Land Records", "Caste Certificates", "Property Registrations"]
# Define a class to mimic Streamlit's UploadedFile object for the example image
class ExampleFile:
def __init__(self, file_path):
self.name = os.path.basename(file_path)
self.type = "image/jpeg"
with open(file_path, "rb") as f:
self._buffer = BytesIO(f.read())
def getvalue(self):
return self._buffer.getvalue()
# Initialize session state
def initialize_session_state():
if "processed_doc" not in st.session_state:
st.session_state.processed_doc = None
if "current_file" not in st.session_state:
st.session_state.current_file = None
# Reset session state
def reset_session_state():
st.session_state.processed_doc = None
st.session_state.current_file = None
# Encode file to base64 for Gemini API
def encode_file(file):
try:
file_content = file.getvalue()
return base64.b64encode(file_content).decode('utf-8')
except Exception as e:
st.error(f"Error encoding file: {str(e)}")
return None
# Query Gemini API
def query_gemini(prompt, image_b64):
try:
headers = {
"Authorization": f"Bearer {GEMINI_API_KEY}",
"Content-Type": "application/json"
}
payload = {
"model": GEMINI_MODEL,
"prompt": prompt,
"image": image_b64
}
response = requests.post(
"https://api.gemini.com/v1/analyze", # Replace with actual Gemini API endpoint
headers=headers,
json=payload
)
response.raise_for_status()
return response.json().get("result", "")
except Exception as e:
st.error(f"Gemini API error: {str(e)}")
return None
# Process the document
def process_document(file):
try:
with st.spinner("Analyzing document..."):
# Encode file to base64
image_b64 = encode_file(file)
if not image_b64:
return
# Store preview image
if file.type == "application/pdf":
pdf = fitz.open(stream=BytesIO(file.getvalue()))
page = pdf[0]
pix = page.get_pixmap()
st.session_state.doc_preview = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
elif file.type.startswith('image/'):
st.session_state.doc_preview = Image.open(BytesIO(file.getvalue()))
elif file.type == "text/plain":
text = file.getvalue().decode('utf-8')
img = Image.new('RGB', (800, 600), color=(73, 109, 137))
d = ImageDraw.Draw(img)
d.text((10, 10), text, fill=(255, 255, 0))
st.session_state.doc_preview = img
else:
st.error("Unsupported file format")
return
# Classify document
classify_prompt = f"Classify this document into one of these categories: {', '.join(DOCUMENT_TYPES)}. Respond only with the category name."
doc_type = query_gemini(classify_prompt, image_b64)
# Extract details
extract_prompt = """Extract and organize all important details from this document including:
- Names
- Dates
- Identification numbers
- Locations
- Key terms
Format as a bullet-point list with clear headings."""
details = query_gemini(extract_prompt, image_b64)
# Verify authenticity
verify_prompt = "Analyze this document for signs of tampering or forgery. Check for: inconsistent fonts, alignment issues, suspicious modifications. Provide verification conclusion."
verification = query_gemini(verify_prompt, image_b64)
st.session_state.processed_doc = {
"type": doc_type or "Unclassified",
"details": details or "No details extracted",
"verification": verification or "Verification failed",
"preview": st.session_state.doc_preview
}
st.success("Document processing complete!")
time.sleep(1)
except Exception as e:
st.error(f"Document processing failed: {str(e)}")
st.session_state.processed_doc = None
# Main application
def main():
st.set_page_config(page_title="DocVerify AI", layout="wide")
initialize_session_state()
# Sidebar Controls
with st.sidebar:
st.header("Document Controls")
uploaded_file = st.file_uploader(
"Upload Document",
type=["pdf", "jpg", "jpeg", "png", "txt"],
key="uploaded_file"
)
if st.button("Use Example Image"):
example_file_path = "Caste-Certificate.jpg"
st.session_state.current_file = ExampleFile(example_file_path)
elif uploaded_file:
st.session_state.current_file = uploaded_file
else:
st.session_state.current_file = None
if st.button("Process Document"):
if st.session_state.current_file:
process_document(st.session_state.current_file)
else:
st.error("Please select a document to process.")
if st.button("New Document"):
reset_session_state()
st.rerun()
if st.session_state.processed_doc:
st.divider()
st.subheader("Document Summary")
st.markdown(f"**Type:** {st.session_state.processed_doc['type']}")
st.markdown(f"**Verification Status:**\n{st.session_state.processed_doc['verification']}")
# Main Interface
st.title("πŸ“„ Automated Document Verifier")
if st.session_state.processed_doc and 'preview' in st.session_state.processed_doc:
col1, col2 = st.columns([1, 2])
with col1:
st.subheader("Document Preview")
st.image(st.session_state.processed_doc['preview'], use_column_width=True)
with col2:
st.subheader("Extracted Details")
st.markdown(st.session_state.processed_doc['details'])
st.subheader("Verification Analysis")
st.markdown(st.session_state.processed_doc['verification'])
else:
st.info("Please select a document and click 'Process Document' to begin verification analysis.")
if __name__ == "__main__":
main()