File size: 6,830 Bytes
7b76e52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import streamlit as st
import base64
import requests
from PIL import Image, ImageDraw
from io import BytesIO
import fitz  # PyMuPDF
import time
import os

# Configuration
GEMINI_API_KEY = st.secrets["GEMINI_API_KEY"]
GEMINI_MODEL = "gemini-1.5-flash"  # Verify with Gemini API documentation
DOCUMENT_TYPES = ["Land Records", "Caste Certificates", "Property Registrations"]

# Define a class to mimic Streamlit's UploadedFile object for the example image
class ExampleFile:
    def __init__(self, file_path):
        self.name = os.path.basename(file_path)
        self.type = "image/jpeg"
        with open(file_path, "rb") as f:
            self._buffer = BytesIO(f.read())
    
    def getvalue(self):
        return self._buffer.getvalue()

# Initialize session state
def initialize_session_state():
    if "processed_doc" not in st.session_state:
        st.session_state.processed_doc = None
    if "current_file" not in st.session_state:
        st.session_state.current_file = None

# Reset session state
def reset_session_state():
    st.session_state.processed_doc = None
    st.session_state.current_file = None

# Encode file to base64 for Gemini API
def encode_file(file):
    try:
        file_content = file.getvalue()
        return base64.b64encode(file_content).decode('utf-8')
    except Exception as e:
        st.error(f"Error encoding file: {str(e)}")
        return None

# Query Gemini API
def query_gemini(prompt, image_b64):
    try:
        headers = {
            "Authorization": f"Bearer {GEMINI_API_KEY}",
            "Content-Type": "application/json"
        }
        payload = {
            "model": GEMINI_MODEL,
            "prompt": prompt,
            "image": image_b64
        }
        response = requests.post(
            "https://api.gemini.com/v1/analyze",  # Replace with actual Gemini API endpoint
            headers=headers,
            json=payload
        )
        response.raise_for_status()
        return response.json().get("result", "")
    except Exception as e:
        st.error(f"Gemini API error: {str(e)}")
        return None

# Process the document
def process_document(file):
    try:
        with st.spinner("Analyzing document..."):
            # Encode file to base64
            image_b64 = encode_file(file)
            if not image_b64:
                return

            # Store preview image
            if file.type == "application/pdf":
                pdf = fitz.open(stream=BytesIO(file.getvalue()))
                page = pdf[0]
                pix = page.get_pixmap()
                st.session_state.doc_preview = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
            elif file.type.startswith('image/'):
                st.session_state.doc_preview = Image.open(BytesIO(file.getvalue()))
            elif file.type == "text/plain":
                text = file.getvalue().decode('utf-8')
                img = Image.new('RGB', (800, 600), color=(73, 109, 137))
                d = ImageDraw.Draw(img)
                d.text((10, 10), text, fill=(255, 255, 0))
                st.session_state.doc_preview = img
            else:
                st.error("Unsupported file format")
                return

            # Classify document
            classify_prompt = f"Classify this document into one of these categories: {', '.join(DOCUMENT_TYPES)}. Respond only with the category name."
            doc_type = query_gemini(classify_prompt, image_b64)
            
            # Extract details
            extract_prompt = """Extract and organize all important details from this document including:
            - Names
            - Dates
            - Identification numbers
            - Locations
            - Key terms
            Format as a bullet-point list with clear headings."""
            details = query_gemini(extract_prompt, image_b64)

            # Verify authenticity
            verify_prompt = "Analyze this document for signs of tampering or forgery. Check for: inconsistent fonts, alignment issues, suspicious modifications. Provide verification conclusion."
            verification = query_gemini(verify_prompt, image_b64)

            st.session_state.processed_doc = {
                "type": doc_type or "Unclassified",
                "details": details or "No details extracted",
                "verification": verification or "Verification failed",
                "preview": st.session_state.doc_preview
            }

            st.success("Document processing complete!")
            time.sleep(1)

    except Exception as e:
        st.error(f"Document processing failed: {str(e)}")
        st.session_state.processed_doc = None

# Main application
def main():
    st.set_page_config(page_title="DocVerify AI", layout="wide")
    initialize_session_state()
    
    # Sidebar Controls
    with st.sidebar:
        st.header("Document Controls")
        
        uploaded_file = st.file_uploader(
            "Upload Document",
            type=["pdf", "jpg", "jpeg", "png", "txt"],
            key="uploaded_file"
        )
        
        if st.button("Use Example Image"):
            example_file_path = "Caste-Certificate.jpg"
            st.session_state.current_file = ExampleFile(example_file_path)
        elif uploaded_file:
            st.session_state.current_file = uploaded_file
        else:
            st.session_state.current_file = None
        
        if st.button("Process Document"):
            if st.session_state.current_file:
                process_document(st.session_state.current_file)
            else:
                st.error("Please select a document to process.")
        
        if st.button("New Document"):
            reset_session_state()
            st.rerun()
        
        if st.session_state.processed_doc:
            st.divider()
            st.subheader("Document Summary")
            st.markdown(f"**Type:** {st.session_state.processed_doc['type']}")
            st.markdown(f"**Verification Status:**\n{st.session_state.processed_doc['verification']}")

    # Main Interface
    st.title("📄 Automated Document Verifier")
    
    if st.session_state.processed_doc and 'preview' in st.session_state.processed_doc:
        col1, col2 = st.columns([1, 2])
        with col1:
            st.subheader("Document Preview")
            st.image(st.session_state.processed_doc['preview'], use_column_width=True)
        
        with col2:
            st.subheader("Extracted Details")
            st.markdown(st.session_state.processed_doc['details'])
            
            st.subheader("Verification Analysis")
            st.markdown(st.session_state.processed_doc['verification'])
    else:
        st.info("Please select a document and click 'Process Document' to begin verification analysis.")

if __name__ == "__main__":
    main()