AutoDocVerify / app.py
rajsecrets0's picture
Update app.py
332b35d verified
raw
history blame
5.77 kB
import streamlit as st
import base64
import requests
from PIL import Image, ImageDraw
from io import BytesIO
import fitz # PyMuPDF
import time
# Configuration - Get API key from Streamlit secrets
GEMINI_API_KEY = st.secrets["GEMINI_API_KEY"]
GEMINI_MODEL = "gemini-2-flash"
DOCUMENT_TYPES = ["Land Records", "Caste Certificates", "Property Registrations"]
# Initialize session state
def initialize_session_state():
if "chat_history" not in st.session_state:
st.session_state["chat_history"] = []
if "processed_doc" not in st.session_state:
st.session_state["processed_doc"] = None
if "doc_preview" not in st.session_state:
st.session_state["doc_preview"] = None
if "uploaded_file" not in st.session_state:
st.session_state["uploaded_file"] = None
# Reset session state
def reset_session_state():
for key in ["chat_history", "processed_doc", "doc_preview", "uploaded_file"]:
st.session_state.pop(key, None)
# Encode uploaded file to base64
def encode_file(uploaded_file):
try:
file_bytes = uploaded_file.getvalue()
if uploaded_file.type == "application/pdf":
pdf = fitz.open(stream=BytesIO(file_bytes))
page = pdf[0]
pix = page.get_pixmap()
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
elif uploaded_file.type.startswith('image/'):
img = Image.open(BytesIO(file_bytes))
elif uploaded_file.type == "text/plain":
text = file_bytes.decode('utf-8')
img = Image.new('RGB', (800, 600), color=(73, 109, 137))
d = ImageDraw.Draw(img)
d.text((10, 10), text, fill=(255, 255, 0))
else:
st.error("Unsupported file format")
return None
img_byte_arr = BytesIO()
img.save(img_byte_arr, format='JPEG')
return base64.b64encode(img_byte_arr.getvalue()).decode('utf-8')
except Exception as e:
st.error(f"File processing error: {str(e)}")
return None
# Query Gemini API
def query_gemini(prompt, image_b64=None):
url = f"https://generativelanguage.googleapis.com/v1/models/{GEMINI_MODEL}:generateContent?key={GEMINI_API_KEY}"
parts = [{"text": prompt}]
if image_b64:
parts.append({"inline_data": {"mime_type": "image/jpeg", "data": image_b64}})
try:
response = requests.post(
url,
json={"contents": [{"parts": parts}]},
headers={"Content-Type": "application/json"},
timeout=30
)
if response.status_code != 200:
st.error(f"API Request failed with status code: {response.status_code}")
return None
data = response.json()
if 'error' in data:
st.error(f"API Error: {data['error'].get('message', 'Unknown error')}")
return None
if not data.get('candidates'):
st.error("No response candidates found in API response")
return None
candidate = data['candidates'][0]
return candidate.get('content', {}).get('parts', [{}])[0].get('text', 'No response text found')
except requests.exceptions.RequestException as e:
st.error(f"API Request failed: {str(e)}")
return None
except Exception as e:
st.error(f"Unexpected error: {str(e)}")
return None
# Process the uploaded document
def process_document():
if not st.session_state.uploaded_file:
st.error("Please upload a document first.")
return
try:
with st.spinner("Analyzing document..."):
image_b64 = encode_file(st.session_state.uploaded_file)
if not image_b64:
return
classify_prompt = f"Classify this document into one of these categories: {', '.join(DOCUMENT_TYPES)}. Respond only with the category name."
doc_type = query_gemini(classify_prompt, image_b64)
extract_prompt = """Extract key details including:
- Names
- Dates
- Identification numbers
- Locations
Format as a bullet-point list."""
details = query_gemini(extract_prompt, image_b64)
verify_prompt = "Analyze this document for signs of tampering. Provide verification status."
verification = query_gemini(verify_prompt, image_b64)
st.session_state.processed_doc = {
"type": doc_type or "Unclassified",
"details": details or "No details extracted",
"verification": verification or "Verification failed",
}
st.success("Document processing complete!")
time.sleep(1)
except Exception as e:
st.error(f"Document processing failed: {str(e)}")
st.session_state.processed_doc = None
# Main app function
def main():
st.set_page_config(page_title="DocVerify AI", layout="wide")
initialize_session_state()
st.sidebar.header("Document Controls")
st.sidebar.file_uploader("Upload Document", type=["pdf", "jpg", "jpeg", "png", "txt"], key="uploaded_file", on_change=process_document)
if st.sidebar.button("New Document"):
reset_session_state()
st.rerun()
st.title("DocVerify AI - Document Analysis")
if st.session_state.processed_doc:
st.subheader("Document Summary")
st.markdown(f"**Type:** {st.session_state.processed_doc['type']}")
st.markdown(f"**Verification Status:** {st.session_state.processed_doc['verification']}")
st.text_area("Extracted Details", st.session_state.processed_doc['details'], height=200)
if __name__ == "__main__":
main()