File size: 5,766 Bytes
7b76e52
 
 
 
 
 
 
 
332b35d
 
 
7b76e52
 
332b35d
7b76e52
332b35d
 
7b76e52
332b35d
 
 
 
 
7b76e52
 
 
332b35d
 
7b76e52
332b35d
 
7b76e52
332b35d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b76e52
332b35d
7b76e52
 
 
332b35d
 
 
 
 
752af65
7b76e52
 
332b35d
 
 
 
7b76e52
332b35d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b76e52
332b35d
7b76e52
 
332b35d
 
 
 
 
7b76e52
 
332b35d
7b76e52
 
 
 
 
 
332b35d
7b76e52
 
 
 
332b35d
7b76e52
332b35d
 
7b76e52
 
 
 
 
 
 
 
 
 
 
 
 
332b35d
7b76e52
 
 
 
332b35d
 
7b76e52
332b35d
 
 
 
 
 
 
 
 
 
 
7b76e52
 
752af65
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import streamlit as st
import base64
import requests
from PIL import Image, ImageDraw
from io import BytesIO
import fitz  # PyMuPDF
import time

# Configuration - Get API key from Streamlit secrets
GEMINI_API_KEY = st.secrets["GEMINI_API_KEY"]
GEMINI_MODEL = "gemini-2-flash"
DOCUMENT_TYPES = ["Land Records", "Caste Certificates", "Property Registrations"]

# Initialize session state
def initialize_session_state():
    if "chat_history" not in st.session_state:
        st.session_state["chat_history"] = []
    if "processed_doc" not in st.session_state:
        st.session_state["processed_doc"] = None
    if "doc_preview" not in st.session_state:
        st.session_state["doc_preview"] = None
    if "uploaded_file" not in st.session_state:
        st.session_state["uploaded_file"] = None

# Reset session state
def reset_session_state():
    for key in ["chat_history", "processed_doc", "doc_preview", "uploaded_file"]:
        st.session_state.pop(key, None)

# Encode uploaded file to base64
def encode_file(uploaded_file):
    try:
        file_bytes = uploaded_file.getvalue()
        
        if uploaded_file.type == "application/pdf":
            pdf = fitz.open(stream=BytesIO(file_bytes))
            page = pdf[0]
            pix = page.get_pixmap()
            img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
        elif uploaded_file.type.startswith('image/'):
            img = Image.open(BytesIO(file_bytes))
        elif uploaded_file.type == "text/plain":
            text = file_bytes.decode('utf-8')
            img = Image.new('RGB', (800, 600), color=(73, 109, 137))
            d = ImageDraw.Draw(img)
            d.text((10, 10), text, fill=(255, 255, 0))
        else:
            st.error("Unsupported file format")
            return None

        img_byte_arr = BytesIO()
        img.save(img_byte_arr, format='JPEG')
        return base64.b64encode(img_byte_arr.getvalue()).decode('utf-8')
    except Exception as e:
        st.error(f"File processing error: {str(e)}")
        return None

# Query Gemini API
def query_gemini(prompt, image_b64=None):
    url = f"https://generativelanguage.googleapis.com/v1/models/{GEMINI_MODEL}:generateContent?key={GEMINI_API_KEY}"
    parts = [{"text": prompt}]
    if image_b64:
        parts.append({"inline_data": {"mime_type": "image/jpeg", "data": image_b64}})
    
    try:
        response = requests.post(
            url,
            json={"contents": [{"parts": parts}]},
            headers={"Content-Type": "application/json"},
            timeout=30
        )
        if response.status_code != 200:
            st.error(f"API Request failed with status code: {response.status_code}")
            return None
        
        data = response.json()
        if 'error' in data:
            st.error(f"API Error: {data['error'].get('message', 'Unknown error')}")
            return None
        
        if not data.get('candidates'):
            st.error("No response candidates found in API response")
            return None
            
        candidate = data['candidates'][0]
        return candidate.get('content', {}).get('parts', [{}])[0].get('text', 'No response text found')
    except requests.exceptions.RequestException as e:
        st.error(f"API Request failed: {str(e)}")
        return None
    except Exception as e:
        st.error(f"Unexpected error: {str(e)}")
        return None

# Process the uploaded document
def process_document():
    if not st.session_state.uploaded_file:
        st.error("Please upload a document first.")
        return
    try:
        with st.spinner("Analyzing document..."):
            image_b64 = encode_file(st.session_state.uploaded_file)
            if not image_b64:
                return

            classify_prompt = f"Classify this document into one of these categories: {', '.join(DOCUMENT_TYPES)}. Respond only with the category name."
            doc_type = query_gemini(classify_prompt, image_b64)
            
            extract_prompt = """Extract key details including:
            - Names
            - Dates
            - Identification numbers
            - Locations
            Format as a bullet-point list."""
            details = query_gemini(extract_prompt, image_b64)
            
            verify_prompt = "Analyze this document for signs of tampering. Provide verification status."
            verification = query_gemini(verify_prompt, image_b64)

            st.session_state.processed_doc = {
                "type": doc_type or "Unclassified",
                "details": details or "No details extracted",
                "verification": verification or "Verification failed",
            }
            st.success("Document processing complete!")
            time.sleep(1)
    except Exception as e:
        st.error(f"Document processing failed: {str(e)}")
        st.session_state.processed_doc = None

# Main app function
def main():
    st.set_page_config(page_title="DocVerify AI", layout="wide")
    initialize_session_state()
    
    st.sidebar.header("Document Controls")
    st.sidebar.file_uploader("Upload Document", type=["pdf", "jpg", "jpeg", "png", "txt"], key="uploaded_file", on_change=process_document)
    
    if st.sidebar.button("New Document"):
        reset_session_state()
        st.rerun()
    
    st.title("DocVerify AI - Document Analysis")
    
    if st.session_state.processed_doc:
        st.subheader("Document Summary")
        st.markdown(f"**Type:** {st.session_state.processed_doc['type']}")
        st.markdown(f"**Verification Status:** {st.session_state.processed_doc['verification']}")
        st.text_area("Extracted Details", st.session_state.processed_doc['details'], height=200)

if __name__ == "__main__":
    main()