Spaces:
Sleeping
Sleeping
File size: 7,254 Bytes
50be1ff 9162cf1 515f567 377f9ae 2235014 e5c766a 8d310cf e5c766a 9162cf1 515f567 e04c223 6e86c39 69b8b9c e5c766a 60bcd70 69b8b9c 5f1836d 3792828 eec10f6 8d310cf 60bcd70 5f1836d 5f9f0ea 60bcd70 5f9f0ea 5f1836d cf4ecc3 5f1836d 5a9cfaf 5f1836d 3792828 e5c766a 8d310cf 62264e0 8d310cf cf4ecc3 a8d0d55 cf4ecc3 e5c766a 3792828 e5c766a 3792828 e5c766a cf4ecc3 e5c766a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import streamlit as st
import os
import getpass
from langchain import PromptTemplate
from langchain import hub
from langchain.docstore.document import Document
from langchain.document_loaders import WebBaseLoader
from langchain.schema import StrOutputParser
from langchain.schema.prompt_template import format_document
from langchain.schema.runnable import RunnablePassthrough
import google.generativeai as genai
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains.llm import LLMChain
from langchain.chains import StuffDocumentsChain
from langchain_core.messages import HumanMessage
import requests
from tradingview_ta import TA_Handler, Interval
import yfinance as yf
from datetime import datetime, timedelta
from newsapi import NewsApiClient
st.set_page_config(layout="wide")
GOOGLE_API_KEY=os.environ['GOOGLE_API_KEY']
st.title('Stock Market Insights')
st.sidebar.image("https://myndroot.com/wp-content/uploads/2023/12/Gemini-Dext.jpg",width =100)
st.sidebar.markdown("The App uses **Google Gemini API** for Text and Vision along with 🦜️🔗 LangChain")
st.sidebar.info("Know more about [NSE Tickers](https://www.google.com/search?q=nse+tickers+list&sca_esv=a6c39f4d03c5324c&sca_upv=1&rlz=1C1GCEB_enIN1011IN1011&sxsrf=ADLYWILQPbew-0SrvUUWpI8Y29_uOOgbvA%3A1716470016765&ei=AEFPZp-zLvzHp84P_ZWtuA0&oq=NSE+Tickers+&gs_lp=Egxnd3Mtd2l6LXNlcnAiDE5TRSBUaWNrZXJzICoCCAAyBRAAGIAEMggQABgWGAoYHjIGEAAYFhgeMgYQABgWGB4yBhAAGBYYHjIGEAAYFhgeMgYQABgWGB4yBhAAGBYYHjILEAAYgAQYhgMYigUyCxAAGIAEGIYDGIoFSIIbUL0PWL0PcAF4AZABAJgB8QKgAfECqgEDMy0xuAEByAEA-AEBmAICoAKKA8ICChAAGLADGNYEGEeYAwCIBgGQBgiSBwUxLjMtMaAHtQU&sclient=gws-wiz-serp)")
st.sidebar.info("Know more about [Charts](https://chart-img.com/)")
ticker_user = st.text_input("Enter Ticker for NSE Stocks","")
gemini_embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
llm = ChatGoogleGenerativeAI(model="gemini-1.5-pro",google_api_key = GOOGLE_API_KEY)
llm_vis = ChatGoogleGenerativeAI(model="gemini-pro-vision",google_api_key = GOOGLE_API_KEY)
def get_tradingview_analysis(symbol, exchange, screener, interval):
try:
stock = TA_Handler(
symbol=symbol,
screener=screener,
exchange=exchange,
interval=interval,
)
analysis_summary = stock.get_analysis()
return analysis_summary
except Exception as e:
return {"error": str(e)}
if ticker_user!="":
url1 = f"https://www.google.com/finance/quote/{ticker_user}:NSE?hl=en"
url2 = f"https://in.tradingview.com/symbols/NSE-{ticker_user}/"
url3 = f"https://in.tradingview.com/symbols/NSE-{ticker_user}/news/"
url4 = f"https://in.tradingview.com/symbols/NSE-{ticker_user}/minds/"
loader = WebBaseLoader([url1,url2,url3,url4])
docs = loader.load()
st.divider()
# llm_prompt_template = """You are an expert Stock Market Trader for stock market insights based on fundamental, analytical, profit based and company financials.
# Based on the context below
# {context}, Summarize the stock based on Historical data based on fundamental, price, news, sentiment , any red flags and suggest rating of the Stock in a 1 to 10 Scale"""
llm_prompt_template = """You are an expert Stock Market Trader specializing in stock market insights derived from fundamental analysis, analytical trends, profit-based evaluations, and detailed company financials. Using your expertise, please analyze the stock based on the provided context below.
Context:
{context}
Task:
Summarize the stock based on its historical and current data.
Evaluate the stock on the following parameters:
1. Company Fundamentals: Assess the stock's intrinsic value, growth potential, and financial health.
2. Current & Future Price Trends: Analyze historical price movements and current price trends.
3. News and Sentiment: Review recent news articles, press releases, and social media sentiment.
4. Red Flags: Identify any potential risks or warning signs.
5. Provide a rating for the stock on a scale of 1 to 10.
6. Advise if the stock is a good buy for the next 2 weeks.
7. Suggest at what price we need to buy and hold or sell
PROVIDE THE DETAILS based on just the FACTS present in the document
PROVIDE THE DETAILS IN an JSON Object
"""
# st.sidebar.subheader('Prompt')
# user_prompt = st.sidebar.text_area("Enter Prompt",llm_prompt_template)
#https://huggingface.co/spaces/pradeepodela/Stock-Analyser/blob/main/app.py
interval = Interval.INTERVAL_1_DAY
analysis_summary = get_tradingview_analysis(
symbol=ticker_user,
exchange="NSE",
screener="india",
interval=interval,
)
st.title("Analysis Summary")
st.dataframe(analysis_summary.summary)
query = f"{ticker_user} stock"
details = {
"symbol": ticker_user,
"exchange": "NSE",
"screener": "india",
"interval": interval,
}
st.title("Details")
st.dataframe(details)
st.title("Oscillator Analysis")
st.dataframe(analysis_summary.oscillators)
st.title("Moving Averages")
st.dataframe(analysis_summary.moving_averages)
st.title("Summary")
st.dataframe(analysis_summary.summary)
st.title("Indicators")
st.dataframe(analysis_summary.indicators)
url = "https://api.chart-img.com/v2/tradingview/advanced-chart"
api_key = "l0iUFRSeqC9z7nDPTd1hnafPh2RrdcEy6rl6tNqV"
headers = {
"x-api-key": api_key,
"content-type": "application/json"
}
data = {
"height": 400,
"theme": "light",
"interval": "1D",
"session": "extended",
"symbol": f"NSE:{ticker_user}"
}
response = requests.post(url, headers=headers, json=data)
if response.status_code == 200:
with open("chart_t1.jpg", "wb") as f:
f.write(response.content)
st.image("chart_t1.jpg", caption='')
llm_prompt = PromptTemplate.from_template(llm_prompt_template)
llm_chain = LLMChain(llm=llm,prompt=llm_prompt)
stuff_chain = StuffDocumentsChain(llm_chain=llm_chain,document_variable_name="context")
res = stuff_chain.invoke(docs)
#create the humanmassage propmt templete with the image file
# hmessage = HumanMessage(
# content=[
# {
# "type": "text",
# "text": "Based on the Image, suggest a BUY and SELL Strategy along with Risk based approach using Stop loss/Target price. PROVIDE THE DETAILS based on just the FACTS present and PROVIDE THE DETAILS IN an JSON Object",
# },
# {"type": "image_url", "image_url": "chart_t1.jpg"},
# ]
# )
# message = llm_vis.invoke([hmessage])
# st.write(message.content)
st.write(res["output_text"])
# print("Image saved as chart-img-02.png")
else:
st.warning(f"Failed to retrieve image. Status code: {response.status_code}")
st.warning("Response:", response.text)
|