rajat5ranjan commited on
Commit
e04c223
·
verified ·
1 Parent(s): e8774d5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -4
app.py CHANGED
@@ -17,6 +17,7 @@ from langchain.chains import StuffDocumentsChain
17
 
18
  GOOGLE_API_KEY=os.environ['GOOGLE_API_KEY']
19
 
 
20
 
21
  ticker_user = st.text_input("Enter Ticker","ADANIENT")
22
 
@@ -30,13 +31,30 @@ gemini_embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
30
 
31
  llm = ChatGoogleGenerativeAI(model="gemini-pro",google_api_key = GOOGLE_API_KEY)
32
 
 
 
 
 
33
 
 
34
 
35
- llm_prompt_template = """You are an expert Stock Market Trader for stock market insights based on fundamental, analytical, profit based and company financials.
36
- Based on the context below
37
- {context}, Summarize the stock based on Historical data based on fundamental, price, news, sentiment , any red flags and suggest rating of the Stock in a 1 to 10 Scale"""
38
 
39
- user_prompt = st.text_area("Enter Prompt",llm_prompt_template)
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
  llm_prompt = PromptTemplate.from_template(user_prompt)
42
 
@@ -45,6 +63,8 @@ stuff_chain = StuffDocumentsChain(llm_chain=llm_chain,document_variable_name="co
45
 
46
 
47
  res = stuff_chain.invoke(docs)
 
 
48
  st.write(res["output_text"])
49
 
50
  # If there is no environment variable set for the API key, you can pass the API
 
17
 
18
  GOOGLE_API_KEY=os.environ['GOOGLE_API_KEY']
19
 
20
+ st.title('Stock Market Insights')
21
 
22
  ticker_user = st.text_input("Enter Ticker","ADANIENT")
23
 
 
31
 
32
  llm = ChatGoogleGenerativeAI(model="gemini-pro",google_api_key = GOOGLE_API_KEY)
33
 
34
+ st.divider()
35
+ # llm_prompt_template = """You are an expert Stock Market Trader for stock market insights based on fundamental, analytical, profit based and company financials.
36
+ # Based on the context below
37
+ # {context}, Summarize the stock based on Historical data based on fundamental, price, news, sentiment , any red flags and suggest rating of the Stock in a 1 to 10 Scale"""
38
 
39
+ llm_prompt_template = """You are an expert Stock Market Trader specializing in stock market insights derived from fundamental analysis, analytical trends, profit-based evaluations, and detailed company financials. Using your expertise, please analyze the stock based on the provided context below.
40
 
41
+ Context:
42
+ {context}
 
43
 
44
+ Task:
45
+ Summarize the stock based on its historical and current data.
46
+ Evaluate the stock on the following parameters:
47
+ 1. Company Fundamentals: Assess the stock's intrinsic value, growth potential, and financial health.
48
+ 2. Current & Future Price Trends: Analyze historical price movements and current price trends.
49
+ 3. News and Sentiment: Review recent news articles, press releases, and social media sentiment.
50
+ 4. Red Flags: Identify any potential risks or warning signs.
51
+ 5. Provide a rating for the stock on a scale of 1 to 10.
52
+ 6. Advise if the stock is a good buy for the next 2 weeks.
53
+ 7. Suggest at what price we need to buy and hold or sell
54
+ """
55
+
56
+ st.sidebar.subheader('Prompt')
57
+ user_prompt = st.sidebar.text_area("Enter Prompt",llm_prompt_template)
58
 
59
  llm_prompt = PromptTemplate.from_template(user_prompt)
60
 
 
63
 
64
 
65
  res = stuff_chain.invoke(docs)
66
+
67
+
68
  st.write(res["output_text"])
69
 
70
  # If there is no environment variable set for the API key, you can pass the API