File size: 5,918 Bytes
50be1ff
9162cf1
 
 
 
 
 
 
 
 
 
515f567
 
 
377f9ae
 
2235014
9162cf1
515f567
 
e04c223
69b8b9c
 
60bcd70
69b8b9c
 
5f1836d
40e2175
eec10f6
60bcd70
5f1836d
 
69b8b9c
60bcd70
69b8b9c
5f1836d
cf4ecc3
5f1836d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf4ecc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8d0d55
cf4ecc3
 
 
a8d0d55
 
515f567
a8d0d55
 
 
 
 
 
 
 
 
 
eec10f6
a8d0d55
 
 
cf4ecc3
 
 
 
 
515f567
 
 
 
 
 
 
 
 
 
 
 
50be1ff
515f567
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import streamlit as st
import os
import getpass
from langchain import PromptTemplate
from langchain import hub
from langchain.docstore.document import Document
from langchain.document_loaders import WebBaseLoader
from langchain.schema import StrOutputParser
from langchain.schema.prompt_template import format_document
from langchain.schema.runnable import RunnablePassthrough
from langchain.vectorstores import Chroma
import google.generativeai as genai
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains.llm import LLMChain
from langchain.chains import StuffDocumentsChain
from langchain_core.messages import HumanMessage

GOOGLE_API_KEY=os.environ['GOOGLE_API_KEY']

st.title('Stock Market Insights')
st.sidebar.info("Know more about [NSE Tickers](https://www.google.com/search?q=nse+tickers+list&sca_esv=a6c39f4d03c5324c&sca_upv=1&rlz=1C1GCEB_enIN1011IN1011&sxsrf=ADLYWILQPbew-0SrvUUWpI8Y29_uOOgbvA%3A1716470016765&ei=AEFPZp-zLvzHp84P_ZWtuA0&oq=NSE+Tickers+&gs_lp=Egxnd3Mtd2l6LXNlcnAiDE5TRSBUaWNrZXJzICoCCAAyBRAAGIAEMggQABgWGAoYHjIGEAAYFhgeMgYQABgWGB4yBhAAGBYYHjIGEAAYFhgeMgYQABgWGB4yBhAAGBYYHjILEAAYgAQYhgMYigUyCxAAGIAEGIYDGIoFSIIbUL0PWL0PcAF4AZABAJgB8QKgAfECqgEDMy0xuAEByAEA-AEBmAICoAKKA8ICChAAGLADGNYEGEeYAwCIBgGQBgiSBwUxLjMtMaAHtQU&sclient=gws-wiz-serp)")
    
ticker_user = st.text_input("Enter Ticker for NSE Stocks","")
    
gemini_embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")

llm = ChatGoogleGenerativeAI(model="gemini-1.5-pro-latest",google_api_key = GOOGLE_API_KEY)
llm_vis = ChatGoogleGenerativeAI(model="gemini-pro-vision",google_api_key = GOOGLE_API_KEY)
if ticker_user!="":
    url1 = f"https://www.google.com/finance/quote/{ticker_user}:NSE?hl=en"
    url2 = f"https://in.tradingview.com/symbols/NSE-{ticker_user}/"
    # url3 = f"https://www.nseindia.com/get-quotes/equity?symbol={ticker_user}"

    loader = WebBaseLoader([url1,url2])
    docs = loader.load()
    
    
    st.divider()
    # llm_prompt_template = """You are an expert Stock Market Trader for stock market insights based on fundamental, analytical, profit based and company financials.
    # Based on the context below
    # {context}, Summarize the stock based on Historical data based on fundamental, price, news, sentiment , any red flags and suggest rating of the Stock in a 1 to 10 Scale"""
    
    llm_prompt_template = """You are an expert Stock Market Trader specializing in stock market insights derived from fundamental analysis, analytical trends, profit-based evaluations, and detailed company financials. Using your expertise, please analyze the stock based on the provided context below.
    
    Context:
    {context}
    
    Task:
    Summarize the stock based on its historical and current data.
    Evaluate the stock on the following parameters:
    1. Company Fundamentals: Assess the stock's intrinsic value, growth potential, and financial health.
    2. Current & Future Price Trends: Analyze historical price movements and current price trends.
    3. News and Sentiment: Review recent news articles, press releases, and social media sentiment.
    4. Red Flags: Identify any potential risks or warning signs.
    5. Provide a rating for the stock on a scale of 1 to 10.
    6. Advise if the stock is a good buy for the next 2 weeks.
    7. Suggest at what price we need to buy and hold or sell
    """
    
    st.sidebar.subheader('Prompt')
    user_prompt = st.sidebar.text_area("Enter Prompt",llm_prompt_template)
    
    llm_prompt = PromptTemplate.from_template(user_prompt)
    
    llm_chain = LLMChain(llm=llm,prompt=llm_prompt)
    stuff_chain = StuffDocumentsChain(llm_chain=llm_chain,document_variable_name="context")
    
    
    res = stuff_chain.invoke(docs)

    import requests
    
    url = "https://api.chart-img.com/v2/tradingview/advanced-chart"
    api_key = "l0iUFRSeqC9z7nDPTd1hnafPh2RrdcEy6rl6tNqV"
    headers = {
        "x-api-key": api_key,
        "content-type": "application/json"
    }
    data = {
        "height": 400,
        "theme": "light",
        "interval": "1D",
        "session": "extended",
        "symbol": f"NSE:{ticker_user}"
    }
    
    response = requests.post(url, headers=headers, json=data)
    
    if response.status_code == 200:
        with open("chart_t1.jpg", "wb") as f:
            f.write(response.content)
            
        st.image("chart_t1.jpg", caption='')
        # print("Image saved as chart-img-02.png")
    else:
        st.write(f"Failed to retrieve image. Status code: {response.status_code}")
        st.write("Response:", response.text)

    #create the humanmassage propmt templete with the image file 
    hmessage = HumanMessage(
        content=[
            {
                "type": "text",
                "text": "Based on the chart, could you predict the movement and suggest a BUY and SELL Strategy",
            },
            {"type": "image_url", "image_url": "chart_t1.jpg"},
        ]
    )
    message = llm_vis.invoke([hmessage])
    
    st.write(message.content)
    st.write(res["output_text"])

    



# If there is no environment variable set for the API key, you can pass the API
# key to the parameter `google_api_key` of the `GoogleGenerativeAIEmbeddings`
# function: `google_api_key = "key"`.

# gemini_embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")

# # Save to disk
# vectorstore = Chroma.from_documents(
#                      documents=docs,                 # Data
#                      embedding=gemini_embeddings,    # Embedding model
#                      persist_directory="./chroma_db" # Directory to save data
#                      )

# vectorstore_disk = Chroma(
#                         persist_directory="./chroma_db",       # Directory of db
#                         embedding_function=gemini_embeddings   # Embedding model