File size: 3,635 Bytes
50be1ff
9162cf1
 
 
 
 
 
 
 
 
 
515f567
 
 
377f9ae
 
9162cf1
515f567
 
e04c223
66e7727
b3df76a
 
e8774d5
 
66e7727
e8774d5
9162cf1
b7f6cd9
 
 
61a50a8
515f567
e04c223
 
 
 
515f567
e04c223
515f567
e04c223
 
92b1dae
e04c223
 
 
 
 
 
 
 
 
 
 
 
 
 
92b1dae
 
61a50a8
377f9ae
 
61a50a8
 
377f9ae
e04c223
 
9c10289
515f567
 
 
 
 
 
 
 
 
 
 
 
 
50be1ff
515f567
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import streamlit as st
import os
import getpass
from langchain import PromptTemplate
from langchain import hub
from langchain.docstore.document import Document
from langchain.document_loaders import WebBaseLoader
from langchain.schema import StrOutputParser
from langchain.schema.prompt_template import format_document
from langchain.schema.runnable import RunnablePassthrough
from langchain.vectorstores import Chroma
import google.generativeai as genai
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains.llm import LLMChain
from langchain.chains import StuffDocumentsChain

GOOGLE_API_KEY=os.environ['GOOGLE_API_KEY']

st.title('Stock Market Insights')

ticker_user = st.text_input("Enter Ticker","ADANIENT")

url1 = f"https://www.google.com/finance/quote/{ticker_user}:NSE?hl=en"
url2 = f"https://in.tradingview.com/symbols/NSE-{ticker_user}/"

loader = WebBaseLoader([url1,url2])
docs = loader.load()

gemini_embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")

llm = ChatGoogleGenerativeAI(model="gemini-pro",google_api_key = GOOGLE_API_KEY)

st.divider()
# llm_prompt_template = """You are an expert Stock Market Trader for stock market insights based on fundamental, analytical, profit based and company financials.
# Based on the context below
# {context}, Summarize the stock based on Historical data based on fundamental, price, news, sentiment , any red flags and suggest rating of the Stock in a 1 to 10 Scale"""

llm_prompt_template = """You are an expert Stock Market Trader specializing in stock market insights derived from fundamental analysis, analytical trends, profit-based evaluations, and detailed company financials. Using your expertise, please analyze the stock based on the provided context below.

Context:
{context}

Task:
Summarize the stock based on its historical and current data.
Evaluate the stock on the following parameters:
1. Company Fundamentals: Assess the stock's intrinsic value, growth potential, and financial health.
2. Current & Future Price Trends: Analyze historical price movements and current price trends.
3. News and Sentiment: Review recent news articles, press releases, and social media sentiment.
4. Red Flags: Identify any potential risks or warning signs.
5. Provide a rating for the stock on a scale of 1 to 10.
6. Advise if the stock is a good buy for the next 2 weeks.
7. Suggest at what price we need to buy and hold or sell
"""

st.sidebar.subheader('Prompt')
user_prompt = st.sidebar.text_area("Enter Prompt",llm_prompt_template)

llm_prompt = PromptTemplate.from_template(user_prompt)

llm_chain = LLMChain(llm=llm,prompt=llm_prompt)
stuff_chain = StuffDocumentsChain(llm_chain=llm_chain,document_variable_name="context")


res = stuff_chain.invoke(docs)


st.write(res["output_text"])

# If there is no environment variable set for the API key, you can pass the API
# key to the parameter `google_api_key` of the `GoogleGenerativeAIEmbeddings`
# function: `google_api_key = "key"`.

# gemini_embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")

# # Save to disk
# vectorstore = Chroma.from_documents(
#                      documents=docs,                 # Data
#                      embedding=gemini_embeddings,    # Embedding model
#                      persist_directory="./chroma_db" # Directory to save data
#                      )

# vectorstore_disk = Chroma(
#                         persist_directory="./chroma_db",       # Directory of db
#                         embedding_function=gemini_embeddings   # Embedding model