Spaces:
Sleeping
Sleeping
File size: 5,336 Bytes
50be1ff 9162cf1 515f567 377f9ae 9162cf1 515f567 e04c223 69b8b9c 60bcd70 69b8b9c 5f1836d 69b8b9c 5f1836d 60bcd70 5f1836d 69b8b9c 60bcd70 69b8b9c 5f1836d cf4ecc3 5f1836d cf4ecc3 5f1836d 60bcd70 5f1836d 515f567 cf4ecc3 515f567 50be1ff 515f567 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
import streamlit as st
import os
import getpass
from langchain import PromptTemplate
from langchain import hub
from langchain.docstore.document import Document
from langchain.document_loaders import WebBaseLoader
from langchain.schema import StrOutputParser
from langchain.schema.prompt_template import format_document
from langchain.schema.runnable import RunnablePassthrough
from langchain.vectorstores import Chroma
import google.generativeai as genai
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains.llm import LLMChain
from langchain.chains import StuffDocumentsChain
GOOGLE_API_KEY=os.environ['GOOGLE_API_KEY']
st.title('Stock Market Insights')
st.sidebar.info("Know more about [NSE Tickers](https://www.google.com/search?q=nse+tickers+list&sca_esv=a6c39f4d03c5324c&sca_upv=1&rlz=1C1GCEB_enIN1011IN1011&sxsrf=ADLYWILQPbew-0SrvUUWpI8Y29_uOOgbvA%3A1716470016765&ei=AEFPZp-zLvzHp84P_ZWtuA0&oq=NSE+Tickers+&gs_lp=Egxnd3Mtd2l6LXNlcnAiDE5TRSBUaWNrZXJzICoCCAAyBRAAGIAEMggQABgWGAoYHjIGEAAYFhgeMgYQABgWGB4yBhAAGBYYHjIGEAAYFhgeMgYQABgWGB4yBhAAGBYYHjILEAAYgAQYhgMYigUyCxAAGIAEGIYDGIoFSIIbUL0PWL0PcAF4AZABAJgB8QKgAfECqgEDMy0xuAEByAEA-AEBmAICoAKKA8ICChAAGLADGNYEGEeYAwCIBgGQBgiSBwUxLjMtMaAHtQU&sclient=gws-wiz-serp)")
ticker_user = st.text_input("Enter Ticker for NSE Stocks","")
gemini_embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
llm = ChatGoogleGenerativeAI(model="gemini-pro",google_api_key = GOOGLE_API_KEY)
if ticker_user!="":
url1 = f"https://www.google.com/finance/quote/{ticker_user}:NSE?hl=en"
url2 = f"https://in.tradingview.com/symbols/NSE-{ticker_user}/"
# url3 = f"https://www.nseindia.com/get-quotes/equity?symbol={ticker_user}"
loader = WebBaseLoader([url1,url2])
docs = loader.load()
st.divider()
# llm_prompt_template = """You are an expert Stock Market Trader for stock market insights based on fundamental, analytical, profit based and company financials.
# Based on the context below
# {context}, Summarize the stock based on Historical data based on fundamental, price, news, sentiment , any red flags and suggest rating of the Stock in a 1 to 10 Scale"""
llm_prompt_template = """You are an expert Stock Market Trader specializing in stock market insights derived from fundamental analysis, analytical trends, profit-based evaluations, and detailed company financials. Using your expertise, please analyze the stock based on the provided context below.
Context:
{context}
Task:
Summarize the stock based on its historical and current data.
Evaluate the stock on the following parameters:
1. Company Fundamentals: Assess the stock's intrinsic value, growth potential, and financial health.
2. Current & Future Price Trends: Analyze historical price movements and current price trends.
3. News and Sentiment: Review recent news articles, press releases, and social media sentiment.
4. Red Flags: Identify any potential risks or warning signs.
5. Provide a rating for the stock on a scale of 1 to 10.
6. Advise if the stock is a good buy for the next 2 weeks.
7. Suggest at what price we need to buy and hold or sell
"""
st.sidebar.subheader('Prompt')
user_prompt = st.sidebar.text_area("Enter Prompt",llm_prompt_template)
llm_prompt = PromptTemplate.from_template(user_prompt)
llm_chain = LLMChain(llm=llm,prompt=llm_prompt)
stuff_chain = StuffDocumentsChain(llm_chain=llm_chain,document_variable_name="context")
res = stuff_chain.invoke(docs)
import requests
url = "https://api.chart-img.com/v2/tradingview/advanced-chart"
api_key = "l0iUFRSeqC9z7nDPTd1hnafPh2RrdcEy6rl6tNqV"
headers = {
"x-api-key": api_key,
"content-type": "application/json"
}
data = {
"height": 400,
"theme": "light",
"interval": "1D",
"session": "extended",
"symbol": f"NSE:{ticker_user}"
}
response = requests.post(url, headers=headers, json=data)
if response.status_code == 200:
with open("chart_t1.jpg", "wb") as f:
f.write(response.content)
st.image("chart_t1.jpg", caption='')
# print("Image saved as chart-img-02.png")
else:
print(f"Failed to retrieve image. Status code: {response.status_code}")
print("Response:", response.text)
st.success('Response')
st.write(res["output_text"])
# If there is no environment variable set for the API key, you can pass the API
# key to the parameter `google_api_key` of the `GoogleGenerativeAIEmbeddings`
# function: `google_api_key = "key"`.
# gemini_embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
# # Save to disk
# vectorstore = Chroma.from_documents(
# documents=docs, # Data
# embedding=gemini_embeddings, # Embedding model
# persist_directory="./chroma_db" # Directory to save data
# )
# vectorstore_disk = Chroma(
# persist_directory="./chroma_db", # Directory of db
# embedding_function=gemini_embeddings # Embedding model |