Spaces:
Runtime error
Runtime error
File size: 4,493 Bytes
50be1ff 9162cf1 515f567 377f9ae 9162cf1 515f567 e04c223 69b8b9c 60bcd70 69b8b9c 5f1836d 69b8b9c 5f1836d 60bcd70 5f1836d 69b8b9c 60bcd70 69b8b9c 5f1836d 69b8b9c 5f1836d 60bcd70 5f1836d 515f567 50be1ff 515f567 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
import streamlit as st
import os
import getpass
from langchain import PromptTemplate
from langchain import hub
from langchain.docstore.document import Document
from langchain.document_loaders import WebBaseLoader
from langchain.schema import StrOutputParser
from langchain.schema.prompt_template import format_document
from langchain.schema.runnable import RunnablePassthrough
from langchain.vectorstores import Chroma
import google.generativeai as genai
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains.llm import LLMChain
from langchain.chains import StuffDocumentsChain
GOOGLE_API_KEY=os.environ['GOOGLE_API_KEY']
st.title('Stock Market Insights')
st.sidebar.info("Know more about [NSE Tickers](https://www.google.com/search?q=nse+tickers+list&sca_esv=a6c39f4d03c5324c&sca_upv=1&rlz=1C1GCEB_enIN1011IN1011&sxsrf=ADLYWILQPbew-0SrvUUWpI8Y29_uOOgbvA%3A1716470016765&ei=AEFPZp-zLvzHp84P_ZWtuA0&oq=NSE+Tickers+&gs_lp=Egxnd3Mtd2l6LXNlcnAiDE5TRSBUaWNrZXJzICoCCAAyBRAAGIAEMggQABgWGAoYHjIGEAAYFhgeMgYQABgWGB4yBhAAGBYYHjIGEAAYFhgeMgYQABgWGB4yBhAAGBYYHjILEAAYgAQYhgMYigUyCxAAGIAEGIYDGIoFSIIbUL0PWL0PcAF4AZABAJgB8QKgAfECqgEDMy0xuAEByAEA-AEBmAICoAKKA8ICChAAGLADGNYEGEeYAwCIBgGQBgiSBwUxLjMtMaAHtQU&sclient=gws-wiz-serp)")
ticker_user = st.text_input("Enter Ticker for NSE Stocks","")
gemini_embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
llm = ChatGoogleGenerativeAI(model="gemini-pro",google_api_key = GOOGLE_API_KEY)
if ticker_user!="":
url1 = f"https://www.google.com/finance/quote/{ticker_user}:NSE?hl=en"
url2 = f"https://in.tradingview.com/symbols/NSE-{ticker_user}/"
# url3 = f"https://www.nseindia.com/get-quotes/equity?symbol={ticker_user}"
loader = WebBaseLoader([url1,url2])
docs = loader.load()
st.divider()
# llm_prompt_template = """You are an expert Stock Market Trader for stock market insights based on fundamental, analytical, profit based and company financials.
# Based on the context below
# {context}, Summarize the stock based on Historical data based on fundamental, price, news, sentiment , any red flags and suggest rating of the Stock in a 1 to 10 Scale"""
llm_prompt_template = """You are an expert Stock Market Trader specializing in stock market insights derived from fundamental analysis, analytical trends, profit-based evaluations, and detailed company financials. Using your expertise, please analyze the stock based on the provided context below.
Context:
{context}
Task:
Summarize the stock based on its historical and current data.
Evaluate the stock on the following parameters:
1. Company Fundamentals: Assess the stock's intrinsic value, growth potential, and financial health.
2. Current & Future Price Trends: Analyze historical price movements and current price trends.
3. News and Sentiment: Review recent news articles, press releases, and social media sentiment.
4. Red Flags: Identify any potential risks or warning signs.
5. Provide a rating for the stock on a scale of 1 to 10.
6. Advise if the stock is a good buy for the next 2 weeks.
7. Suggest at what price we need to buy and hold or sell
"""
st.sidebar.subheader('Prompt')
user_prompt = st.sidebar.text_area("Enter Prompt",llm_prompt_template)
llm_prompt = PromptTemplate.from_template(user_prompt)
llm_chain = LLMChain(llm=llm,prompt=llm_prompt)
stuff_chain = StuffDocumentsChain(llm_chain=llm_chain,document_variable_name="context")
res = stuff_chain.invoke(docs)
st.success('Response')
st.write(res["output_text"])
# If there is no environment variable set for the API key, you can pass the API
# key to the parameter `google_api_key` of the `GoogleGenerativeAIEmbeddings`
# function: `google_api_key = "key"`.
# gemini_embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
# # Save to disk
# vectorstore = Chroma.from_documents(
# documents=docs, # Data
# embedding=gemini_embeddings, # Embedding model
# persist_directory="./chroma_db" # Directory to save data
# )
# vectorstore_disk = Chroma(
# persist_directory="./chroma_db", # Directory of db
# embedding_function=gemini_embeddings # Embedding model |