File size: 15,146 Bytes
50be1ff 9162cf1 515f567 377f9ae 2235014 e5c766a 8d310cf 2d1e24d 8d310cf e5c766a 9162cf1 515f567 e04c223 6e86c39 69b8b9c e5c766a 60bcd70 b9e5c8a 2216b17 8d310cf 60bcd70 5f1836d 5f9f0ea 60bcd70 5f9f0ea 5f1836d cf4ecc3 5f1836d eb6a0e0 5f1836d 2bbf999 5a9cfaf 2bbf999 7d80a24 2bbf999 7d80a24 2bbf999 7d80a24 2bbf999 7d80a24 2bbf999 7d80a24 2bbf999 7d80a24 2bbf999 7d80a24 2bbf999 7d80a24 2bbf999 7d80a24 2bbf999 7d80a24 2bbf999 7d80a24 2bbf999 7d80a24 2bbf999 7d80a24 2bbf999 7d80a24 2bbf999 7d80a24 5f1836d 3792828 e5c766a 8d310cf 43e3731 8d310cf 43e3731 8d310cf 43e3731 8d310cf 43e3731 8d310cf 43e3731 8d310cf 43e3731 116eecb 43e3731 2d1e24d 43e3731 2d1e24d 43e3731 2d1e24d 43e3731 2d1e24d 8d310cf cf4ecc3 a8d0d55 cf4ecc3 e5c766a fe90eb6 e5c766a 39518ae eb6a0e0 e5c766a 3792828 e5c766a 3792828 43e3731 2d1e24d 43e3731 cf4ecc3 e5c766a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
import streamlit as st
import os
import getpass
from langchain import PromptTemplate
from langchain import hub
from langchain.docstore.document import Document
from langchain.document_loaders import WebBaseLoader
from langchain.schema import StrOutputParser
from langchain.schema.prompt_template import format_document
from langchain.schema.runnable import RunnablePassthrough
import google.generativeai as genai
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains.llm import LLMChain
from langchain.chains import StuffDocumentsChain
from langchain_core.messages import HumanMessage
import requests
from tradingview_ta import TA_Handler, Interval
import yfinance as yf
from datetime import datetime, timedelta
from newsapi import NewsApiClient
import json
import altair as alt
st.set_page_config(layout="wide")
GOOGLE_API_KEY=os.environ['GOOGLE_API_KEY']
st.title('Stock Market Insights')
st.sidebar.image("https://myndroot.com/wp-content/uploads/2023/12/Gemini-Dext.jpg",width =100)
st.sidebar.markdown("The App uses **Google Gemini API** for Text and Vision along with π¦οΈπ LangChain")
st.sidebar.info("Know more about [NSE Tickers](https://www.google.com/search?q=nse+tickers+list&sca_esv=a6c39f4d03c5324c&sca_upv=1&rlz=1C1GCEB_enIN1011IN1011&sxsrf=ADLYWILQPbew-0SrvUUWpI8Y29_uOOgbvA%3A1716470016765&ei=AEFPZp-zLvzHp84P_ZWtuA0&oq=NSE+Tickers+&gs_lp=Egxnd3Mtd2l6LXNlcnAiDE5TRSBUaWNrZXJzICoCCAAyBRAAGIAEMggQABgWGAoYHjIGEAAYFhgeMgYQABgWGB4yBhAAGBYYHjIGEAAYFhgeMgYQABgWGB4yBhAAGBYYHjILEAAYgAQYhgMYigUyCxAAGIAEGIYDGIoFSIIbUL0PWL0PcAF4AZABAJgB8QKgAfECqgEDMy0xuAEByAEA-AEBmAICoAKKA8ICChAAGLADGNYEGEeYAwCIBgGQBgiSBwUxLjMtMaAHtQU&sclient=gws-wiz-serp)")
st.sidebar.info("Know more about [Charts](https://chart-img.com/)")
ticker_user = st.text_input("Enter Ticker for NSE Stocks","")
gemini_embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
llm = ChatGoogleGenerativeAI(model="gemini-2.5-pro",google_api_key = GOOGLE_API_KEY)
#llm_vis = ChatGoogleGenerativeAI(model="gemini-pro-vision",google_api_key = GOOGLE_API_KEY)
def get_tradingview_analysis(symbol, exchange, screener, interval):
try:
stock = TA_Handler(
symbol=symbol,
screener=screener,
exchange=exchange,
interval=interval,
)
analysis_summary = stock.get_analysis()
return analysis_summary
except Exception as e:
return {"error": str(e)}
if ticker_user!="":
url1 = f"https://www.google.com/finance/quote/{ticker_user}:NSE?hl=en"
url2 = f"https://in.tradingview.com/symbols/NSE-{ticker_user}/"
url3 = f"https://in.tradingview.com/symbols/NSE-{ticker_user}/news/"
url4 = f"https://in.tradingview.com/symbols/NSE-{ticker_user}/minds/"
loader = WebBaseLoader([url1,url2,url3,url4])
docs = loader.load()
st.divider()
# llm_prompt_template = """You are an expert Stock Market Trader for stock market insights based on fundamental, analytical, profit based and company financials.
# Based on the context below
# {context}, Summarize the stock based on Historical data based on fundamental, price, news, sentiment , any red flags and suggest rating of the Stock in a 1 to 10 Scale"""
llm_prompt_template = """You are an expert Stock Market Trader specializing in stock market insights derived from fundamental analysis, analytical trends, profit-based evaluations, and detailed company financials. Using your expertise, please analyze the stock based on the provided context below.
Context:
{input_documents}
Task:
Summarize the stock based on its historical and current data.
Evaluate the stock on the following parameters:
1. Company Fundamentals: Assess the stock's intrinsic value, growth potential, and financial health.
2. Current & Future Price Trends: Analyze historical price movements and current price trends.
3. News and Sentiment: Review recent news articles, press releases, and social media sentiment.
4. Red Flags: Identify any potential risks or warning signs.
5. Provide a rating for the stock on a scale of 1 to 10.
6. Advise if the stock is a good buy for the next 1,5, 10 weeks.
7. Suggest at what price we need to buy and hold or sell the stock
PROVIDE THE DETAILS based on just the FACTS present in the document
PROVIDE THE DETAILS IN an JSON Object. Stick to the below JSON object
{{
"stock_summary": {{
"company_name": "",
"ticker": "",
"exchange": "",
"description": "",
"current_price": "",
"market_cap": "",
"historical_performance": {{
"5_day": "",
"1_month": "",
"6_months": "",
"1_year": "",
"5_years": ""
}}
}},
"evaluation_parameters": {{
"company_fundamentals": {{
"assessment": "",
"key_metrics": {{
"pe_ratio": "",
"volume":"",
"revenue_growth_yoy": "",
"net_income_growth_yoy": "",
"eps_growth_yoy": "",
"dividend_yield": "",
"balance_sheet": "",
"return_on_capital": ""
}}
}},
"current_and_future_price_trends": {{
"assessment": "",
"historical_trends": "",
"current_trends": "",
"technical_analysis_notes": "",
"technical_indicators":""
}},
"news_and_sentiment": {{
"assessment": "",
"positive_sentiment": [
"",
"",
""
],
"negative_sentiment": [
"",
"",
""
]
}},
"red_flags": [
{{
"flag": "",
"details": ""
}},
{{
"flag": "",
"details": ""
}},
{{
"flag": "",
"details": ""
}}
]
}},
"overall_rating": {{
"rating": "X/10",
"justification": ""
}},
"investment_advice": {{
"next_1_weeks_outlook": "",
"next_5_weeks_outlook": "",
"next_10_weeks_outlook": "",
"price_action_suggestions": {{
"buy": "",
"hold": "",
"sell": ""
}}
}}
}}
"""
# st.sidebar.subheader('Prompt')
# user_prompt = st.sidebar.text_area("Enter Prompt",llm_prompt_template)
#https://huggingface.co/spaces/pradeepodela/Stock-Analyser/blob/main/app.py
interval = Interval.INTERVAL_1_DAY
analysis_summary = get_tradingview_analysis(
symbol=ticker_user,
exchange="NSE",
screener="india",
interval=interval,
)
# st.title("Analysis Summary")
# st.dataframe(analysis_summary.summary)
# query = f"{ticker_user} stock"
details = {
"symbol": ticker_user,
"exchange": "NSE",
"screener": "india",
"interval": interval,
}
# st.title("Details")
# st.dataframe(details)
# st.title("Oscillator Analysis")
# st.dataframe(analysis_summary.oscillators)
# st.title("Moving Averages")
# st.dataframe(analysis_summary.moving_averages)
# st.title("Summary")
# st.dataframe(analysis_summary.summary)
# st.title("Indicators")
# st.dataframe(analysis_summary.indicators)
# Page Title
st.title(f"π TradingView Analysis: {ticker_user} ({details['exchange']})")
# --- Row 1: Details + Summary ---
col1, col2 = st.columns([1, 3])
with col1:
st.subheader("βΉοΈ Details")
st.table(details) # Using st.table for a concise key-value look
with col2:
st.subheader("π Summary")
# Create bar chart with Altair
chart = alt.Chart(analysis_summary.summary).mark_bar().encode(
x=alt.X('RECOMMENDATION', sort=['BUY', 'NEUTRAL', 'SELL']), # order if needed
y='Count',
color='RECOMMENDATION'
).properties(
width=400,
height=300,
title="Recommendation Counts"
)
st.altair_chart(chart, use_container_width=True)
st.dataframe(analysis_summary.summary, use_container_width=True)
# --- Row 2: Oscillators + Moving Averages ---
# col3, col4 = st.columns(2)
# with col3:
# st.subheader("βοΈ Oscillator Analysis")
# st.dataframe(analysis_summary.oscillators, use_container_width=True)
# with col4:
# st.subheader("π Moving Averages")
# st.dataframe(analysis_summary.moving_averages, use_container_width=True)
# # --- Row 3: Indicators ---
# st.subheader("π Indicators")
# st.dataframe(analysis_summary.indicators, use_container_width=True)
url = "https://api.chart-img.com/v2/tradingview/advanced-chart"
api_key = "l0iUFRSeqC9z7nDPTd1hnafPh2RrdcEy6rl6tNqV"
headers = {
"x-api-key": api_key,
"content-type": "application/json"
}
data = {
"height": 400,
"theme": "light",
"interval": "1D",
"session": "extended",
"symbol": f"NSE:{ticker_user}"
}
response = requests.post(url, headers=headers, json=data)
if response.status_code == 200:
with open("chart_t1.jpg", "wb") as f:
f.write(response.content)
st.image("chart_t1.jpg", caption='')
llm_prompt = PromptTemplate.from_template(llm_prompt_template)
llm_chain = LLMChain(llm=llm,prompt=llm_prompt)
stuff_chain = StuffDocumentsChain(llm_chain=llm_chain,document_variable_name="input_documents")
# res = stuff_chain.invoke(docs)
res = stuff_chain.invoke({"input_documents": docs})
#create the humanmassage propmt templete with the image file
# hmessage = HumanMessage(
# content=[
# {
# "type": "text",
# "text": "Based on the Image, suggest a BUY and SELL Strategy along with Risk based approach using Stop loss/Target price. PROVIDE THE DETAILS based on just the FACTS present and PROVIDE THE DETAILS IN an JSON Object",
# },
# {"type": "image_url", "image_url": "chart_t1.jpg"},
# ]
# )
# message = llm_vis.invoke([hmessage])
# st.write(message.content)
# st.write(res["output_text"])
data = json.loads(res["output_text"])
# Header Info
st.markdown(f"### {data['stock_summary']['company_name']} ({data['stock_summary']['ticker']}) | {data['stock_summary']['exchange']}")
st.markdown(f"**Description**: {data['stock_summary']['description']}")
# === Row 1: Price and Market Cap ===
row1 = st.columns(3)
row1[0].metric("π° Current Price", data["stock_summary"]["current_price"])
row1[1].metric("π’ Market Cap", data["stock_summary"]["market_cap"])
row1[2].metric("β Rating", data["overall_rating"]["rating"])
# === Row 2: Historical Performance ===
st.subheader("π Historical Performance")
perf_cols = st.columns(len(data["stock_summary"]["historical_performance"]))
for i, (k, v) in enumerate(data["stock_summary"]["historical_performance"].items()):
perf_cols[i].metric(k.replace("_", " ").title(), v)
# === Row 3: Fundamentals ===
st.subheader("π Company Fundamentals")
row3 = st.columns(4)
metrics = data["evaluation_parameters"]["company_fundamentals"]["key_metrics"]
row3[0].metric("P/E Ratio", metrics["pe_ratio"])
row3[1].metric("EPS YoY", metrics["eps_growth_yoy"])
row3[2].metric("Revenue YoY", metrics["revenue_growth_yoy"])
row3[3].metric("Dividend Yield", metrics["dividend_yield"])
row3b = st.columns(4)
row3b[0].metric("Net Income YoY", metrics["net_income_growth_yoy"])
row3b[1].metric("Volume", metrics["volume"])
row3b[2].metric("Return on Capital", metrics["return_on_capital"])
row3b[3].metric("Balance Sheet", metrics["balance_sheet"])
st.info(data["evaluation_parameters"]["company_fundamentals"]["assessment"])
# === Row 4: Trends and Technicals ===
st.subheader("π Trends & Technical Analysis")
row4 = st.columns(3)
row4[0].markdown(f"**Historical Trends:** {data['evaluation_parameters']['current_and_future_price_trends']['historical_trends']}")
row4[1].markdown(f"**Current Trends:** {data['evaluation_parameters']['current_and_future_price_trends']['current_trends']}")
row4[2].markdown(f"**Technical Indicators:** {data['evaluation_parameters']['current_and_future_price_trends']['technical_indicators']}")
st.success(data["evaluation_parameters"]["current_and_future_price_trends"]["assessment"])
st.caption(f"π Notes: {data['evaluation_parameters']['current_and_future_price_trends']['technical_analysis_notes']}")
# === Row 5: Sentiment ===
st.subheader("π° News & Sentiment")
sentiment_cols = st.columns(2)
with sentiment_cols[0]:
st.success("π Positive Sentiment")
for s in data["evaluation_parameters"]["news_and_sentiment"]["positive_sentiment"]:
st.write(f"β
{s}")
with sentiment_cols[1]:
st.error("π Negative Sentiment")
for s in data["evaluation_parameters"]["news_and_sentiment"]["negative_sentiment"]:
st.write(f"β {s}")
st.info(data["evaluation_parameters"]["news_and_sentiment"]["assessment"])
# === Row 6: Red Flags ===
st.subheader("π© Red Flags")
red_flag_cols = st.columns(3)
for i, flag in enumerate(data["evaluation_parameters"]["red_flags"]):
red_flag_cols[i].warning(f"**{flag['flag']}**\n{flag['details']}")
# === Row 7: Investment Advice ===
st.subheader("π‘ Investment Advice")
advice_cols = st.columns(3)
advice = data["investment_advice"]
advice_cols[0].markdown(f"**Next 1 Week**\n{advice['next_1_weeks_outlook']}")
advice_cols[1].markdown(f"**Next 5 Weeks**\n{advice['next_5_weeks_outlook']}")
advice_cols[2].markdown(f"**Next 10 Weeks**\n{advice['next_10_weeks_outlook']}")
action_cols = st.columns(3)
action_cols[0].success(f"**Buy:** {advice['price_action_suggestions']['buy']}")
action_cols[1].info(f"**Hold:** {advice['price_action_suggestions']['hold']}")
action_cols[2].error(f"**Sell:** {advice['price_action_suggestions']['sell']}")
# === Footer ===
st.markdown("---")
st.caption("Generated by AI-powered financial analysis dashboard.")
else:
st.warning(f"Failed to retrieve image. Status code: {response.status_code}")
st.warning("Response:", response.text)
|