File size: 15,146 Bytes
50be1ff
9162cf1
 
 
 
 
 
 
 
 
515f567
 
 
377f9ae
 
2235014
e5c766a
8d310cf
 
 
 
2d1e24d
 
8d310cf
e5c766a
9162cf1
515f567
 
e04c223
6e86c39
 
69b8b9c
e5c766a
 
60bcd70
b9e5c8a
2216b17
 
8d310cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60bcd70
5f1836d
 
5f9f0ea
 
60bcd70
5f9f0ea
5f1836d
cf4ecc3
5f1836d
 
 
 
 
 
 
 
 
eb6a0e0
5f1836d
 
 
 
 
 
 
 
 
2bbf999
 
5a9cfaf
 
2bbf999
7d80a24
 
2bbf999
 
 
 
 
 
7d80a24
2bbf999
 
 
 
 
7d80a24
 
 
 
2bbf999
7d80a24
2bbf999
 
 
 
 
 
 
 
7d80a24
 
 
2bbf999
 
 
 
 
7d80a24
 
2bbf999
 
 
 
 
 
 
 
 
 
 
7d80a24
2bbf999
7d80a24
2bbf999
 
7d80a24
 
2bbf999
 
7d80a24
 
2bbf999
 
7d80a24
2bbf999
7d80a24
 
2bbf999
 
7d80a24
 
2bbf999
 
 
7d80a24
2bbf999
 
 
7d80a24
 
 
5f1836d
 
3792828
e5c766a
8d310cf
 
 
 
 
 
 
 
 
43e3731
 
 
8d310cf
 
 
 
 
 
 
43e3731
 
8d310cf
43e3731
 
8d310cf
43e3731
 
8d310cf
43e3731
 
8d310cf
43e3731
 
 
 
116eecb
43e3731
 
 
 
 
 
 
 
 
2d1e24d
 
 
 
 
 
 
 
 
 
 
 
43e3731
 
 
2d1e24d
 
 
 
43e3731
2d1e24d
 
 
43e3731
2d1e24d
 
 
8d310cf
cf4ecc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8d0d55
cf4ecc3
e5c766a
 
 
 
fe90eb6
e5c766a
39518ae
eb6a0e0
e5c766a
3792828
 
 
 
 
 
 
 
 
 
e5c766a
3792828
43e3731
2d1e24d
43e3731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf4ecc3
e5c766a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import streamlit as st
import os
import getpass
from langchain import PromptTemplate
from langchain import hub
from langchain.docstore.document import Document
from langchain.document_loaders import WebBaseLoader
from langchain.schema import StrOutputParser
from langchain.schema.prompt_template import format_document
from langchain.schema.runnable import RunnablePassthrough
import google.generativeai as genai
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains.llm import LLMChain
from langchain.chains import StuffDocumentsChain
from langchain_core.messages import HumanMessage
import requests
from tradingview_ta import TA_Handler, Interval
import yfinance as yf
from datetime import datetime, timedelta
from newsapi import NewsApiClient
import json
import altair as alt

st.set_page_config(layout="wide")

GOOGLE_API_KEY=os.environ['GOOGLE_API_KEY']

st.title('Stock Market Insights')
st.sidebar.image("https://myndroot.com/wp-content/uploads/2023/12/Gemini-Dext.jpg",width =100)
st.sidebar.markdown("The App uses **Google Gemini API** for Text and Vision along with πŸ¦œοΈπŸ”— LangChain")
st.sidebar.info("Know more about [NSE Tickers](https://www.google.com/search?q=nse+tickers+list&sca_esv=a6c39f4d03c5324c&sca_upv=1&rlz=1C1GCEB_enIN1011IN1011&sxsrf=ADLYWILQPbew-0SrvUUWpI8Y29_uOOgbvA%3A1716470016765&ei=AEFPZp-zLvzHp84P_ZWtuA0&oq=NSE+Tickers+&gs_lp=Egxnd3Mtd2l6LXNlcnAiDE5TRSBUaWNrZXJzICoCCAAyBRAAGIAEMggQABgWGAoYHjIGEAAYFhgeMgYQABgWGB4yBhAAGBYYHjIGEAAYFhgeMgYQABgWGB4yBhAAGBYYHjILEAAYgAQYhgMYigUyCxAAGIAEGIYDGIoFSIIbUL0PWL0PcAF4AZABAJgB8QKgAfECqgEDMy0xuAEByAEA-AEBmAICoAKKA8ICChAAGLADGNYEGEeYAwCIBgGQBgiSBwUxLjMtMaAHtQU&sclient=gws-wiz-serp)")

st.sidebar.info("Know more about [Charts](https://chart-img.com/)")
ticker_user = st.text_input("Enter Ticker for NSE Stocks","")
gemini_embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
llm = ChatGoogleGenerativeAI(model="gemini-2.5-pro",google_api_key = GOOGLE_API_KEY)
#llm_vis = ChatGoogleGenerativeAI(model="gemini-pro-vision",google_api_key = GOOGLE_API_KEY)

def get_tradingview_analysis(symbol, exchange, screener, interval):
    try:
        stock = TA_Handler(
            symbol=symbol,
            screener=screener,
            exchange=exchange,
            interval=interval,
        )
        analysis_summary = stock.get_analysis()
        return analysis_summary
    except Exception as e:
        return {"error": str(e)}

        
if ticker_user!="":
    url1 = f"https://www.google.com/finance/quote/{ticker_user}:NSE?hl=en"
    url2 = f"https://in.tradingview.com/symbols/NSE-{ticker_user}/"
    url3 = f"https://in.tradingview.com/symbols/NSE-{ticker_user}/news/"
    url4 = f"https://in.tradingview.com/symbols/NSE-{ticker_user}/minds/"

    loader = WebBaseLoader([url1,url2,url3,url4])
    docs = loader.load()
    
    
    st.divider()
    # llm_prompt_template = """You are an expert Stock Market Trader for stock market insights based on fundamental, analytical, profit based and company financials.
    # Based on the context below
    # {context}, Summarize the stock based on Historical data based on fundamental, price, news, sentiment , any red flags and suggest rating of the Stock in a 1 to 10 Scale"""
    
    llm_prompt_template = """You are an expert Stock Market Trader specializing in stock market insights derived from fundamental analysis, analytical trends, profit-based evaluations, and detailed company financials. Using your expertise, please analyze the stock based on the provided context below.
    
    Context:
    {input_documents}
    
    Task:
    Summarize the stock based on its historical and current data.
    Evaluate the stock on the following parameters:
    1. Company Fundamentals: Assess the stock's intrinsic value, growth potential, and financial health.
    2. Current & Future Price Trends: Analyze historical price movements and current price trends.
    3. News and Sentiment: Review recent news articles, press releases, and social media sentiment.
    4. Red Flags: Identify any potential risks or warning signs.
    5. Provide a rating for the stock on a scale of 1 to 10.
    6. Advise if the stock is a good buy for the next 1,5, 10 weeks.
    7. Suggest at what price we need to buy and hold or sell the stock

    PROVIDE THE DETAILS based on just the FACTS present in the document
    PROVIDE THE DETAILS IN an JSON Object. Stick to the below JSON object
    {{
      "stock_summary": {{
        "company_name": "",
        "ticker": "",
        "exchange": "",
        "description": "",
        "current_price": "",
        "market_cap": "",
        "historical_performance": {{
          "5_day": "",
          "1_month": "",
          "6_months": "",
          "1_year": "",
          "5_years": ""
        }}
      }},
      "evaluation_parameters": {{
        "company_fundamentals": {{
          "assessment": "",
          "key_metrics": {{
            "pe_ratio": "",
            "volume":"",
            "revenue_growth_yoy": "",
            "net_income_growth_yoy": "",
            "eps_growth_yoy": "",
            "dividend_yield": "",
            "balance_sheet": "",
            "return_on_capital": ""
          }}
        }},
        "current_and_future_price_trends": {{
          "assessment": "",
          "historical_trends": "",
          "current_trends": "",
          "technical_analysis_notes": "",
          "technical_indicators":""
        }},
        "news_and_sentiment": {{
          "assessment": "",
          "positive_sentiment": [
            "",
            "",
            ""
          ],
          "negative_sentiment": [
            "",
            "",
            ""
          ]
        }},
        "red_flags": [
          {{
            "flag": "",
            "details": ""
          }},
          {{
            "flag": "",
            "details": ""
          }},
          {{
            "flag": "",
            "details": ""
          }}
        ]
      }},
      "overall_rating": {{
        "rating": "X/10",
        "justification": ""
      }},
      "investment_advice": {{
        "next_1_weeks_outlook": "",
        "next_5_weeks_outlook": "",
        "next_10_weeks_outlook": "",
        "price_action_suggestions": {{
          "buy": "",
          "hold": "",
          "sell": ""
        }}
      }}
    }}
    """
    
    # st.sidebar.subheader('Prompt')
    # user_prompt = st.sidebar.text_area("Enter Prompt",llm_prompt_template)
    #https://huggingface.co/spaces/pradeepodela/Stock-Analyser/blob/main/app.py
    interval = Interval.INTERVAL_1_DAY
    analysis_summary = get_tradingview_analysis(
            symbol=ticker_user,
            exchange="NSE",
            screener="india",
            interval=interval,
        )

    # st.title("Analysis Summary")
    # st.dataframe(analysis_summary.summary)
    # query = f"{ticker_user} stock"

    details = {
        "symbol": ticker_user,
        "exchange": "NSE",
        "screener": "india",
        "interval": interval,
    }
    # st.title("Details")
    # st.dataframe(details)

    # st.title("Oscillator Analysis")
    # st.dataframe(analysis_summary.oscillators)

    # st.title("Moving Averages")
    # st.dataframe(analysis_summary.moving_averages)

    # st.title("Summary")
    # st.dataframe(analysis_summary.summary)

    # st.title("Indicators")
    # st.dataframe(analysis_summary.indicators)

    # Page Title
    st.title(f"πŸ“Š TradingView Analysis: {ticker_user} ({details['exchange']})")
    
    # --- Row 1: Details + Summary ---
    col1, col2 = st.columns([1, 3])
    with col1:
        st.subheader("ℹ️ Details")
        st.table(details)  # Using st.table for a concise key-value look
    
    with col2:
        st.subheader("πŸ“ Summary")
        # Create bar chart with Altair
        chart = alt.Chart(analysis_summary.summary).mark_bar().encode(
            x=alt.X('RECOMMENDATION', sort=['BUY', 'NEUTRAL', 'SELL']),  # order if needed
            y='Count',
            color='RECOMMENDATION'
        ).properties(
            width=400,
            height=300,
            title="Recommendation Counts"
        )
        
        st.altair_chart(chart, use_container_width=True)
        st.dataframe(analysis_summary.summary, use_container_width=True)
    
    # --- Row 2: Oscillators + Moving Averages ---
    # col3, col4 = st.columns(2)
    # with col3:
    #     st.subheader("βš™οΈ Oscillator Analysis")
    #     st.dataframe(analysis_summary.oscillators, use_container_width=True)
    
    # with col4:
    #     st.subheader("πŸ“ˆ Moving Averages")
    #     st.dataframe(analysis_summary.moving_averages, use_container_width=True)
    
    # # --- Row 3: Indicators ---
    # st.subheader("πŸ” Indicators")
    # st.dataframe(analysis_summary.indicators, use_container_width=True)

    url = "https://api.chart-img.com/v2/tradingview/advanced-chart"
    api_key = "l0iUFRSeqC9z7nDPTd1hnafPh2RrdcEy6rl6tNqV"
    headers = {
        "x-api-key": api_key,
        "content-type": "application/json"
    }
    data = {
        "height": 400,
        "theme": "light",
        "interval": "1D",
        "session": "extended",
        "symbol": f"NSE:{ticker_user}"
    }
    
    response = requests.post(url, headers=headers, json=data)
    
    if response.status_code == 200:
        with open("chart_t1.jpg", "wb") as f:
            f.write(response.content)
            
        st.image("chart_t1.jpg", caption='')

        llm_prompt = PromptTemplate.from_template(llm_prompt_template)
    
        llm_chain = LLMChain(llm=llm,prompt=llm_prompt)
        stuff_chain = StuffDocumentsChain(llm_chain=llm_chain,document_variable_name="input_documents")
        
        # res = stuff_chain.invoke(docs)
        res = stuff_chain.invoke({"input_documents": docs})
        #create the humanmassage propmt templete with the image file 
        # hmessage = HumanMessage(
        #     content=[
        #         {
        #             "type": "text",
        #             "text": "Based on the Image, suggest a BUY and SELL Strategy along with Risk based approach using Stop loss/Target price. PROVIDE THE DETAILS based on just the FACTS present and PROVIDE THE DETAILS IN an JSON Object",
        #         },
        #         {"type": "image_url", "image_url": "chart_t1.jpg"},
        #     ]
        # )
        # message = llm_vis.invoke([hmessage])
        
        # st.write(message.content)
        # st.write(res["output_text"])
        data = json.loads(res["output_text"])
        # Header Info
        st.markdown(f"### {data['stock_summary']['company_name']} ({data['stock_summary']['ticker']}) | {data['stock_summary']['exchange']}")
        st.markdown(f"**Description**: {data['stock_summary']['description']}")
        
        # === Row 1: Price and Market Cap ===
        row1 = st.columns(3)
        row1[0].metric("πŸ’° Current Price", data["stock_summary"]["current_price"])
        row1[1].metric("🏒 Market Cap", data["stock_summary"]["market_cap"])
        row1[2].metric("⭐ Rating", data["overall_rating"]["rating"])
        
        # === Row 2: Historical Performance ===
        st.subheader("πŸ“Š Historical Performance")
        perf_cols = st.columns(len(data["stock_summary"]["historical_performance"]))
        for i, (k, v) in enumerate(data["stock_summary"]["historical_performance"].items()):
            perf_cols[i].metric(k.replace("_", " ").title(), v)
        
        # === Row 3: Fundamentals ===
        st.subheader("πŸ“˜ Company Fundamentals")
        row3 = st.columns(4)
        metrics = data["evaluation_parameters"]["company_fundamentals"]["key_metrics"]
        row3[0].metric("P/E Ratio", metrics["pe_ratio"])
        row3[1].metric("EPS YoY", metrics["eps_growth_yoy"])
        row3[2].metric("Revenue YoY", metrics["revenue_growth_yoy"])
        row3[3].metric("Dividend Yield", metrics["dividend_yield"])
        
        row3b = st.columns(4)
        row3b[0].metric("Net Income YoY", metrics["net_income_growth_yoy"])
        row3b[1].metric("Volume", metrics["volume"])
        row3b[2].metric("Return on Capital", metrics["return_on_capital"])
        row3b[3].metric("Balance Sheet", metrics["balance_sheet"])
        
        st.info(data["evaluation_parameters"]["company_fundamentals"]["assessment"])
        
        # === Row 4: Trends and Technicals ===
        st.subheader("πŸ“ˆ Trends & Technical Analysis")
        row4 = st.columns(3)
        row4[0].markdown(f"**Historical Trends:** {data['evaluation_parameters']['current_and_future_price_trends']['historical_trends']}")
        row4[1].markdown(f"**Current Trends:** {data['evaluation_parameters']['current_and_future_price_trends']['current_trends']}")
        row4[2].markdown(f"**Technical Indicators:** {data['evaluation_parameters']['current_and_future_price_trends']['technical_indicators']}")
        
        st.success(data["evaluation_parameters"]["current_and_future_price_trends"]["assessment"])
        st.caption(f"πŸ“ Notes: {data['evaluation_parameters']['current_and_future_price_trends']['technical_analysis_notes']}")
        
        # === Row 5: Sentiment ===
        st.subheader("πŸ“° News & Sentiment")
        sentiment_cols = st.columns(2)
        with sentiment_cols[0]:
            st.success("πŸ‘ Positive Sentiment")
            for s in data["evaluation_parameters"]["news_and_sentiment"]["positive_sentiment"]:
                st.write(f"βœ… {s}")
        with sentiment_cols[1]:
            st.error("πŸ‘Ž Negative Sentiment")
            for s in data["evaluation_parameters"]["news_and_sentiment"]["negative_sentiment"]:
                st.write(f"❌ {s}")
        st.info(data["evaluation_parameters"]["news_and_sentiment"]["assessment"])
        
        # === Row 6: Red Flags ===
        st.subheader("🚩 Red Flags")
        red_flag_cols = st.columns(3)
        for i, flag in enumerate(data["evaluation_parameters"]["red_flags"]):
            red_flag_cols[i].warning(f"**{flag['flag']}**\n{flag['details']}")
        
        # === Row 7: Investment Advice ===
        st.subheader("πŸ’‘ Investment Advice")
        advice_cols = st.columns(3)
        advice = data["investment_advice"]
        advice_cols[0].markdown(f"**Next 1 Week**\n{advice['next_1_weeks_outlook']}")
        advice_cols[1].markdown(f"**Next 5 Weeks**\n{advice['next_5_weeks_outlook']}")
        advice_cols[2].markdown(f"**Next 10 Weeks**\n{advice['next_10_weeks_outlook']}")
        
        action_cols = st.columns(3)
        action_cols[0].success(f"**Buy:** {advice['price_action_suggestions']['buy']}")
        action_cols[1].info(f"**Hold:** {advice['price_action_suggestions']['hold']}")
        action_cols[2].error(f"**Sell:** {advice['price_action_suggestions']['sell']}")
        
        # === Footer ===
        st.markdown("---")
        st.caption("Generated by AI-powered financial analysis dashboard.")
    else:
        st.warning(f"Failed to retrieve image. Status code: {response.status_code}")
        st.warning("Response:", response.text)