Spaces:
Sleeping
Sleeping
import streamlit as st | |
from langchain_groq import ChatGroq | |
from langchain_community.utilities import ArxivAPIWrapper, WikipediaAPIWrapper | |
from langchain_community.tools import ArxivQueryRun, WikipediaQueryRun, DuckDuckGoSearchRun | |
from langchain.agents import initialize_agent, AgentType | |
from langchain.callbacks import StreamlitCallbackHandler | |
import os | |
from dotenv import load_dotenv | |
## Code | |
### | |
## Arxiv and Wikipedia Tools | |
api_wrapper_wiki=WikipediaAPIWrapper(top_k_results=1,doc_content_chars_max=200) | |
wiki = WikipediaQueryRun(api_wrapper=api_wrapper_wiki) | |
api_wrapper_arxiv=ArxivAPIWrapper(top_k_results=1,doc_content_chars_max=200) | |
arxiv=ArxivQueryRun(api_wrapper=api_wrapper_arxiv) | |
search=DuckDuckGoSearchRun(name="Search") | |
st.title("π LangChain - Chat with search") | |
""" | |
In this example, we're using `StreamlitCallbackHandler` to display the thoughts and actions of an agent in an interactive Streamlit app. | |
Try more LangChain π€ Streamlit Agent examples at [github.com/langchain-ai/streamlit-agent](https://github.com/langchain-ai/streamlit-agent). | |
""" | |
## Sidebar for settings | |
st.sidebar.title("Settings") | |
api_key=st.sidebar.text_input("Enter your Groq API Key:",type="password") | |
if "messages" not in st.session_state: | |
st.session_state["messages"]=[ | |
{ | |
"role":"assistant", | |
"content":"Hi I'm a chatbot who can search the web. How can I help you?" | |
} | |
] | |
for msg in st.session_state.messages: | |
st.chat_message(msg["role"]).write(msg["content"]) | |
if prompt:=st.chat_input(placeholder="What is machine learning?"): | |
st.session_state.messages.append({"role":"user","content":prompt}) | |
st.chat_message("user").write(prompt) | |
llm=ChatGroq(groq_api_key=api_key,model_name="Llama3-8b-8192",streaming=True) | |
tools=[search,arxiv,wiki] | |
search_agent=initialize_agent(tools,llm,agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,handle_parsing_errors=True) | |
with st.chat_message("assistant"): | |
st_cb=StreamlitCallbackHandler(st.container(),expand_new_thoughts=False) | |
response=search_agent.run(st.session_state.messages,callbacks=[st_cb]) | |
st.session_state.messages.append({"role":"assistant","content":response}) | |
st.write(response) | |