Spaces:
Sleeping
Sleeping
File size: 2,297 Bytes
3a62d3f f58b2d9 3a62d3f f58b2d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import streamlit as st
from langchain_groq import ChatGroq
from langchain_community.utilities import ArxivAPIWrapper, WikipediaAPIWrapper
from langchain_community.tools import ArxivQueryRun, WikipediaQueryRun, DuckDuckGoSearchRun
from langchain.agents import initialize_agent, AgentType
from langchain.callbacks import StreamlitCallbackHandler
import os
from dotenv import load_dotenv
## Code
###
## Arxiv and Wikipedia Tools
api_wrapper_wiki=WikipediaAPIWrapper(top_k_results=1,doc_content_chars_max=200)
wiki = WikipediaQueryRun(api_wrapper=api_wrapper_wiki)
api_wrapper_arxiv=ArxivAPIWrapper(top_k_results=1,doc_content_chars_max=200)
arxiv=ArxivQueryRun(api_wrapper=api_wrapper_arxiv)
search=DuckDuckGoSearchRun(name="Search")
st.title("🔎 LangChain - Chat with search")
"""
In this example, we're using `StreamlitCallbackHandler` to display the thoughts and actions of an agent in an interactive Streamlit app.
Try more LangChain 🤝 Streamlit Agent examples at [github.com/langchain-ai/streamlit-agent](https://github.com/langchain-ai/streamlit-agent).
"""
## Sidebar for settings
st.sidebar.title("Settings")
api_key=st.sidebar.text_input("Enter your Groq API Key:",type="password")
if "messages" not in st.session_state:
st.session_state["messages"]=[
{
"role":"assistant",
"content":"Hi I'm a chatbot who can search the web. How can I help you?"
}
]
for msg in st.session_state.messages:
st.chat_message(msg["role"]).write(msg["content"])
if prompt:=st.chat_input(placeholder="What is machine learning?"):
st.session_state.messages.append({"role":"user","content":prompt})
st.chat_message("user").write(prompt)
llm=ChatGroq(groq_api_key=api_key,model_name="Llama3-8b-8192",streaming=True)
tools=[search,arxiv,wiki]
search_agent=initialize_agent(tools,llm,agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,handle_parsing_errors=True)
with st.chat_message("assistant"):
st_cb=StreamlitCallbackHandler(st.container(),expand_new_thoughts=False)
response=search_agent.run(st.session_state.messages,callbacks=[st_cb])
st.session_state.messages.append({"role":"assistant","content":response})
st.write(response)
|