File size: 7,773 Bytes
787e445
387a10e
66ab4b2
387a10e
 
 
 
66ab4b2
 
387a10e
66ab4b2
387a10e
 
 
 
66ab4b2
 
 
 
 
 
 
 
387a10e
 
6d92970
387a10e
66ab4b2
 
 
 
 
 
387a10e
66ab4b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d92970
66ab4b2
 
 
387a10e
66ab4b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
387a10e
66ab4b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
387a10e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66ab4b2
6d92970
66ab4b2
6d92970
387a10e
 
66ab4b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
387a10e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66ab4b2
387a10e
 
 
 
 
 
 
66ab4b2
387a10e
 
 
 
 
 
 
66ab4b2
387a10e
66ab4b2
387a10e
 
 
 
 
66ab4b2
387a10e
66ab4b2
387a10e
66ab4b2
 
 
 
 
 
 
 
387a10e
 
 
66ab4b2
 
 
387a10e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#Meaningless comments for restarting
import gradio as gr
import spaces
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
import threading
from PIL import Image

MODEL_ID = "cagliostrolab/animagine-xl-3.1"
device = "cuda" if torch.cuda.is_available() else "cpu"

if torch.cuda.is_available():
    torch.cuda.max_memory_allocated(device=device)
    pipe = DiffusionPipeline.from_pretrained(
        MODEL_ID, 
        torch_dtype=torch.float16, 
        use_safetensors=True, 
    )
else:
    pipe = DiffusionPipeline.from_pretrained(MODEL_ID, use_safetensors=True)
pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1536

def latents_to_rgb(latents):
    weights = (
        (60, -60, 25, -70),
        (60, -5, 15, -50),
        (60, 10, -5, -35)
    )

    weights_tensor = torch.tensor(weights, dtype=latents.dtype, device=latents.device).T
    biases_tensor = torch.tensor((150, 140, 130), dtype=latents.dtype, device=latents.device)
    rgb_tensor = torch.einsum("...lxy,lr -> ...rxy", latents, weights_tensor) + biases_tensor.view(-1, 1, 1)
    image_array = rgb_tensor.clamp(0, 255)[0].byte().cpu().numpy()
    image_array = image_array.transpose(1, 2, 0)  # Change the order of dimensions

    pil_image = Image.fromarray(image_array)

    resized_image = pil_image.resize((pil_image.size[0] * 2, pil_image.size[1] * 2), Image.LANCZOS)  # Resize 128x128 * ...
    return resized_image

class BaseGenerator:
    def __init__(self, pipe):
        self.pipe = pipe
        self.image = None
        self.new_image_event = threading.Event()
        self.generation_finished = threading.Event()
        self.intermediate_image_concurrency(3)

    def intermediate_image_concurrency(self, concurrency):
        self.concurrency = concurrency
    
    def decode_tensors(self, pipe, step, timestep, callback_kwargs):
        latents = callback_kwargs["latents"]
        if step % self.concurrency == 0:  # every how many steps
            print(step)
            self.image = latents_to_rgb(latents)
            self.new_image_event.set()  # Signal that a new image is available
        return callback_kwargs

    def show_images(self):
        while not self.generation_finished.is_set() or self.new_image_event.is_set():
            self.new_image_event.wait()  # Wait for a new image
            self.new_image_event.clear()  # Clear the event flag

            if self.image:
                yield self.image  # Yield the new image

    def generate_images(self, **kwargs):
        if kwargs.get('randomize_seed', False):
            kwargs['seed'] = random.randint(0, MAX_SEED)
            
        generator = torch.Generator().manual_seed(kwargs['seed'])
    
        self.image = None
        self.image = self.pipe(
            height=kwargs['height'],
            width=kwargs['width'],
            prompt=kwargs['prompt'],
            negative_prompt=kwargs['negative_prompt'],
            guidance_scale=kwargs['guidance_scale'],
            num_inference_steps=kwargs['num_inference_steps'],
            generator=generator,
            callback_on_step_end=self.decode_tensors,
            callback_on_step_end_tensor_inputs=["latents"],
        ).images[0]
        print("finish")
        self.new_image_event.set()  # Result image
        self.generation_finished.set()  # Signal that generation is finished

    def stream(self, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
        self.generation_finished.clear()
        threading.Thread(target=self.generate_images, args=(), kwargs=dict(
            prompt=prompt,
            negative_prompt=negative_prompt,
            seed=seed,
            randomize_seed=randomize_seed,
            width=width,
            height=height,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps
        )).start()
        return self.show_images()

image_generator = BaseGenerator(pipe)

@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, concurrency):

    image_generator.intermediate_image_concurrency(concurrency)
    
    stream = image_generator.stream(
        prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps
    )

    yield None
    
    for image in stream:
        yield image


css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # Text-to-Image: Display each generation step
        
        Gradio template for displaying preview images during generation steps
        
        Currently running on {power_device}.
        """)

        prompt = gr.Text(
            label="Prompt",
            show_label=False,
            max_lines=1,
            placeholder="Enter your prompt",
            container=False,
            value="1girl, souryuu asuka langley, neon genesis evangelion, solo, upper body, v, smile, looking at viewer, outdoors, night",
        )

        negative_prompt = gr.Text(
            label="Negative prompt",
            max_lines=1,
            placeholder="Enter a negative prompt",
            visible=True,
            value="nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
        )
        
        with gr.Row():
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=832,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1216,
                )
            
            with gr.Row():
                
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=30.0,
                    step=0.1,
                    value=7.0,
                )
                
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=100,
                    step=1,
                    value=76,
                )

            concurrency_gui = gr.Slider(
                label="Number of steps to show the next preview image",
                minimum=1,
                maximum=20,
                step=1,
                value=3,
            )

    run_button.click(
        fn = infer,
        inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, concurrency_gui],
        outputs = [result],
        show_progress="minimal",
    )

demo.queue().launch()