Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,47 +1,126 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import numpy as np
|
3 |
import random
|
4 |
from diffusers import DiffusionPipeline
|
5 |
import torch
|
|
|
|
|
6 |
|
|
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
|
9 |
if torch.cuda.is_available():
|
10 |
torch.cuda.max_memory_allocated(device=device)
|
11 |
-
pipe = DiffusionPipeline.from_pretrained(
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
17 |
|
18 |
MAX_SEED = np.iinfo(np.int32).max
|
19 |
-
MAX_IMAGE_SIZE = 1024
|
20 |
|
21 |
-
def
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
examples = [
|
41 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
42 |
-
"An astronaut riding a green horse",
|
43 |
-
"A delicious ceviche cheesecake slice",
|
44 |
-
]
|
45 |
|
46 |
css="""
|
47 |
#col-container {
|
@@ -59,33 +138,36 @@ with gr.Blocks(css=css) as demo:
|
|
59 |
|
60 |
with gr.Column(elem_id="col-container"):
|
61 |
gr.Markdown(f"""
|
62 |
-
# Text-to-Image
|
|
|
63 |
Currently running on {power_device}.
|
64 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
with gr.Row():
|
67 |
|
68 |
-
prompt = gr.Text(
|
69 |
-
label="Prompt",
|
70 |
-
show_label=False,
|
71 |
-
max_lines=1,
|
72 |
-
placeholder="Enter your prompt",
|
73 |
-
container=False,
|
74 |
-
)
|
75 |
-
|
76 |
run_button = gr.Button("Run", scale=0)
|
77 |
|
78 |
result = gr.Image(label="Result", show_label=False)
|
79 |
|
80 |
with gr.Accordion("Advanced Settings", open=False):
|
81 |
|
82 |
-
negative_prompt = gr.Text(
|
83 |
-
label="Negative prompt",
|
84 |
-
max_lines=1,
|
85 |
-
placeholder="Enter a negative prompt",
|
86 |
-
visible=False,
|
87 |
-
)
|
88 |
-
|
89 |
seed = gr.Slider(
|
90 |
label="Seed",
|
91 |
minimum=0,
|
@@ -103,7 +185,7 @@ with gr.Blocks(css=css) as demo:
|
|
103 |
minimum=256,
|
104 |
maximum=MAX_IMAGE_SIZE,
|
105 |
step=32,
|
106 |
-
value=
|
107 |
)
|
108 |
|
109 |
height = gr.Slider(
|
@@ -111,7 +193,7 @@ with gr.Blocks(css=css) as demo:
|
|
111 |
minimum=256,
|
112 |
maximum=MAX_IMAGE_SIZE,
|
113 |
step=32,
|
114 |
-
value=
|
115 |
)
|
116 |
|
117 |
with gr.Row():
|
@@ -119,28 +201,32 @@ with gr.Blocks(css=css) as demo:
|
|
119 |
guidance_scale = gr.Slider(
|
120 |
label="Guidance scale",
|
121 |
minimum=0.0,
|
122 |
-
maximum=
|
123 |
step=0.1,
|
124 |
-
value=
|
125 |
)
|
126 |
|
127 |
num_inference_steps = gr.Slider(
|
128 |
label="Number of inference steps",
|
129 |
minimum=1,
|
130 |
-
maximum=
|
131 |
step=1,
|
132 |
-
value=
|
133 |
)
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
139 |
|
140 |
run_button.click(
|
141 |
fn = infer,
|
142 |
-
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
143 |
-
outputs = [result]
|
|
|
144 |
)
|
145 |
|
146 |
demo.queue().launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import spaces
|
3 |
import numpy as np
|
4 |
import random
|
5 |
from diffusers import DiffusionPipeline
|
6 |
import torch
|
7 |
+
import threading
|
8 |
+
from PIL import Image
|
9 |
|
10 |
+
MODEL_ID = "cagliostrolab/animagine-xl-3.1"
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
if torch.cuda.is_available():
|
14 |
torch.cuda.max_memory_allocated(device=device)
|
15 |
+
pipe = DiffusionPipeline.from_pretrained(
|
16 |
+
MODEL_ID,
|
17 |
+
torch_dtype=torch.float16,
|
18 |
+
use_safetensors=True,
|
19 |
+
)
|
20 |
+
else:
|
21 |
+
pipe = DiffusionPipeline.from_pretrained(MODEL_ID, use_safetensors=True)
|
22 |
+
pipe = pipe.to(device)
|
23 |
|
24 |
MAX_SEED = np.iinfo(np.int32).max
|
25 |
+
MAX_IMAGE_SIZE = 1024 + 512
|
26 |
|
27 |
+
def latents_to_rgb(latents):
|
28 |
+
weights = (
|
29 |
+
(60, -60, 25, -70),
|
30 |
+
(60, -5, 15, -50),
|
31 |
+
(60, 10, -5, -35)
|
32 |
+
)
|
33 |
|
34 |
+
weights_tensor = torch.tensor(weights, dtype=latents.dtype, device=latents.device).T
|
35 |
+
biases_tensor = torch.tensor((150, 140, 130), dtype=latents.dtype, device=latents.device)
|
36 |
+
rgb_tensor = torch.einsum("...lxy,lr -> ...rxy", latents, weights_tensor) + biases_tensor.view(-1, 1, 1)
|
37 |
+
image_array = rgb_tensor.clamp(0, 255)[0].byte().cpu().numpy()
|
38 |
+
image_array = image_array.transpose(1, 2, 0) # Change the order of dimensions
|
39 |
+
|
40 |
+
pil_image = Image.fromarray(image_array)
|
41 |
+
|
42 |
+
resized_image = pil_image.resize((pil_image.size[0] * 2, pil_image.size[1] * 2), Image.LANCZOS) # Resize 128x128 * ...
|
43 |
+
return resized_image
|
44 |
+
|
45 |
+
class BaseGenerator:
|
46 |
+
def __init__(self, pipe):
|
47 |
+
self.pipe = pipe
|
48 |
+
self.image = None
|
49 |
+
self.new_image_event = threading.Event()
|
50 |
+
self.generation_finished = threading.Event()
|
51 |
+
self.intermediate_image_concurrency(5)
|
52 |
+
|
53 |
+
def intermediate_image_concurrency(self, concurrency):
|
54 |
+
self.concurrency = concurrency
|
55 |
|
56 |
+
def decode_tensors(self, pipe, step, timestep, callback_kwargs):
|
57 |
+
latents = callback_kwargs["latents"]
|
58 |
+
if step % self.concurrency == 0: # every how many steps
|
59 |
+
print(step)
|
60 |
+
self.image = latents_to_rgb(latents)
|
61 |
+
self.new_image_event.set() # Signal that a new image is available
|
62 |
+
return callback_kwargs
|
63 |
+
|
64 |
+
def show_images(self):
|
65 |
+
while not self.generation_finished.is_set() or self.new_image_event.is_set():
|
66 |
+
self.new_image_event.wait() # Wait for a new image
|
67 |
+
self.new_image_event.clear() # Clear the event flag
|
68 |
+
|
69 |
+
if self.image:
|
70 |
+
yield self.image # Yield the new image
|
71 |
+
|
72 |
+
def generate_images(self, **kwargs):
|
73 |
+
if kwargs.get('randomize_seed', False):
|
74 |
+
kwargs['seed'] = random.randint(0, MAX_SEED)
|
75 |
+
|
76 |
+
generator = torch.Generator().manual_seed(kwargs['seed'])
|
77 |
|
78 |
+
self.image = None
|
79 |
+
self.image = self.pipe(
|
80 |
+
height=kwargs['height'],
|
81 |
+
width=kwargs['width'],
|
82 |
+
prompt=kwargs['prompt'],
|
83 |
+
negative_prompt=kwargs['negative_prompt'],
|
84 |
+
guidance_scale=kwargs['guidance_scale'],
|
85 |
+
num_inference_steps=kwargs['num_inference_steps'],
|
86 |
+
generator=generator,
|
87 |
+
callback_on_step_end=self.decode_tensors,
|
88 |
+
callback_on_step_end_tensor_inputs=["latents"],
|
89 |
+
).images[0]
|
90 |
+
print("finish")
|
91 |
+
self.new_image_event.set() # Result image
|
92 |
+
self.generation_finished.set() # Signal that generation is finished
|
93 |
+
|
94 |
+
def stream(self, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
95 |
+
self.generation_finished.clear()
|
96 |
+
threading.Thread(target=self.generate_images, args=(), kwargs=dict(
|
97 |
+
prompt=prompt,
|
98 |
+
negative_prompt=negative_prompt,
|
99 |
+
seed=seed,
|
100 |
+
randomize_seed=randomize_seed,
|
101 |
+
width=width,
|
102 |
+
height=height,
|
103 |
+
guidance_scale=guidance_scale,
|
104 |
+
num_inference_steps=num_inference_steps
|
105 |
+
)).start()
|
106 |
+
return self.show_images()
|
107 |
+
|
108 |
+
image_generator = BaseGenerator(pipe)
|
109 |
+
|
110 |
+
@spaces.GPU
|
111 |
+
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, concurrency):
|
112 |
+
|
113 |
+
image_generator.intermediate_image_concurrency(concurrency)
|
114 |
+
|
115 |
+
stream = image_generator.stream(
|
116 |
+
prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps
|
117 |
+
)
|
118 |
+
|
119 |
+
yield None
|
120 |
+
|
121 |
+
for image in stream:
|
122 |
+
yield image
|
123 |
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
css="""
|
126 |
#col-container {
|
|
|
138 |
|
139 |
with gr.Column(elem_id="col-container"):
|
140 |
gr.Markdown(f"""
|
141 |
+
# Text-to-Image: Display each generation step
|
142 |
+
Gradio template for displaying preview images during generation steps
|
143 |
Currently running on {power_device}.
|
144 |
""")
|
145 |
+
|
146 |
+
prompt = gr.Text(
|
147 |
+
label="Prompt",
|
148 |
+
show_label=False,
|
149 |
+
max_lines=1,
|
150 |
+
placeholder="Enter your prompt",
|
151 |
+
container=False,
|
152 |
+
value="1girl, souryuu asuka langley, neon genesis evangelion, solo, upper body, v, smile, looking at viewer, outdoors, night",
|
153 |
+
)
|
154 |
+
|
155 |
+
negative_prompt = gr.Text(
|
156 |
+
label="Negative prompt",
|
157 |
+
max_lines=1,
|
158 |
+
placeholder="Enter a negative prompt",
|
159 |
+
visible=True,
|
160 |
+
value="nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
|
161 |
+
)
|
162 |
|
163 |
with gr.Row():
|
164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
run_button = gr.Button("Run", scale=0)
|
166 |
|
167 |
result = gr.Image(label="Result", show_label=False)
|
168 |
|
169 |
with gr.Accordion("Advanced Settings", open=False):
|
170 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
seed = gr.Slider(
|
172 |
label="Seed",
|
173 |
minimum=0,
|
|
|
185 |
minimum=256,
|
186 |
maximum=MAX_IMAGE_SIZE,
|
187 |
step=32,
|
188 |
+
value=832,
|
189 |
)
|
190 |
|
191 |
height = gr.Slider(
|
|
|
193 |
minimum=256,
|
194 |
maximum=MAX_IMAGE_SIZE,
|
195 |
step=32,
|
196 |
+
value=1216,
|
197 |
)
|
198 |
|
199 |
with gr.Row():
|
|
|
201 |
guidance_scale = gr.Slider(
|
202 |
label="Guidance scale",
|
203 |
minimum=0.0,
|
204 |
+
maximum=30.0,
|
205 |
step=0.1,
|
206 |
+
value=7.0,
|
207 |
)
|
208 |
|
209 |
num_inference_steps = gr.Slider(
|
210 |
label="Number of inference steps",
|
211 |
minimum=1,
|
212 |
+
maximum=100,
|
213 |
step=1,
|
214 |
+
value=76,
|
215 |
)
|
216 |
+
|
217 |
+
concurrency_gui = gr.Slider(
|
218 |
+
label="Number of steps to show the next preview image",
|
219 |
+
minimum=1,
|
220 |
+
maximum=20,
|
221 |
+
step=1,
|
222 |
+
value=3,
|
223 |
+
)
|
224 |
|
225 |
run_button.click(
|
226 |
fn = infer,
|
227 |
+
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, concurrency_gui],
|
228 |
+
outputs = [result],
|
229 |
+
show_progress="minimal",
|
230 |
)
|
231 |
|
232 |
demo.queue().launch()
|