File size: 6,645 Bytes
8ba7a1f
2738ccd
12e44e3
 
 
 
b0bacdc
 
 
 
8ba7a1f
f6019ba
8ba7a1f
 
12e44e3
8ba7a1f
b0bacdc
a3902aa
b0bacdc
 
12e44e3
 
 
b0bacdc
12e44e3
b0bacdc
 
 
 
8ba7a1f
 
 
b0bacdc
 
 
 
 
022e3b7
8ba7a1f
 
12e44e3
 
 
b0bacdc
12e44e3
 
b0bacdc
12e44e3
 
 
8ba7a1f
 
 
 
12e44e3
b0bacdc
f6019ba
12e44e3
f6019ba
12e44e3
 
 
 
b0bacdc
12e44e3
 
 
 
b0bacdc
12e44e3
b0bacdc
 
d936000
12e44e3
 
 
60b51d3
 
 
b0bacdc
 
 
 
 
60b51d3
 
b0bacdc
60b51d3
d936000
b0bacdc
12e44e3
b0bacdc
 
12e44e3
60b51d3
 
12e44e3
b0bacdc
 
 
 
12e44e3
 
b0bacdc
 
8ba7a1f
 
 
 
 
12e44e3
8ba7a1f
 
 
 
 
 
12e44e3
b0bacdc
12e44e3
 
 
 
b0bacdc
12e44e3
 
 
 
 
a3902aa
b0bacdc
12e44e3
 
 
b0bacdc
a3902aa
 
12e44e3
 
 
 
 
a3902aa
 
b0bacdc
a3902aa
 
8ba7a1f
b0bacdc
 
 
12e44e3
 
 
8ba7a1f
12e44e3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import streamlit as st
from helper import (
    load_dataset, search, get_file_paths,
    get_cordinates, get_images_from_s3_to_display,
    get_images_with_bounding_boxes_from_s3, load_dataset_with_limit
)
import os
import time
import psutil
from memory_profiler import memory_usage

# Load environment variables
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")

# Predefined list of datasets
datasets = ["WayveScenes", "MajorTom-Germany"]
description = {
    "WayveScenes": "A large-scale dataset featuring diverse urban driving scenes, captured from autonomous vehicles to advance AI perception and navigation in complex environments.",
    "MajorTom-Germany": "A geospatial dataset containing satellite imagery from across Germany, designed for tasks like land-use classification, environmental monitoring, and earth observation analytics."
}
selection = {
    'WayveScenes': [1, 8],
    "MajorTom-Germany": [1, 1]
}
folder_path_dict = {
        "WayveScenes" : 'WayveScenes/',
        "MajorTom-Germany": "MajorTom-Europe/"
    }
# AWS S3 bucket name
bucket_name = "datasets-quasara-io"

# Function to display CPU and memory usage
def display_usage():
    process = psutil.Process(os.getpid())
    st.write(f"CPU usage: {process.cpu_percent()}%")
    st.write(f"Memory usage: {process.memory_info().rss / (1024 ** 2)} MB")

# Streamlit App
def main():
    # Initialize session state variables if not already initialized
    if 'search_in_small_objects' not in st.session_state:
        st.session_state.search_in_small_objects = False

    if 'dataset_number' not in st.session_state:
        st.session_state.dataset_number = 1

    if 'df' not in st.session_state:
        st.session_state.df = None

    st.title("Semantic Search and Image Display")

    # Select dataset from dropdown
    dataset_name = st.selectbox("Select Dataset", datasets)

    folder_path = folder_path_dict[dataset_name]

    st.caption(description[dataset_name])

    if st.checkbox("Enable Small Object Search", value=st.session_state.search_in_small_objects):
        st.session_state.search_in_small_objects = True
        st.text("Small Object Search Enabled")
        st.session_state.dataset_number = st.selectbox("Select Subset of Data", list(range(1, selection[dataset_name][1] + 1)))
        st.text(f"You have selected Split Dataset {st.session_state.dataset_number}")
    else:
        st.session_state.search_in_small_objects = False
        st.text("Small Object Search Disabled")
        st.session_state.dataset_number = st.selectbox("Select Subset of Data", list(range(1, selection[dataset_name][0] + 1)))
        st.text(f"You have selected Main Dataset {st.session_state.dataset_number}")

    dataset_limit = st.slider("Size of Dataset to be searched from", min_value=1000, max_value=30000, value=10000)
    st.text(f'The smaller the dataset the faster the search will work.')

    # Load dataset with limit only if not already loaded
    if st.button("Load Dataset"):
        try:
            loading_dataset_text = st.empty()
            loading_dataset_text.text("Loading Dataset...")
            loading_dataset_bar = st.progress(0)
            
            # Memory profiling
            mem_usage = memory_usage((load_dataset_with_limit, (dataset_name, st.session_state.dataset_number, st.session_state.search_in_small_objects), {"limit": dataset_limit}))
            st.write(f"Memory used for loading the dataset: {mem_usage[-1]:.2f} MB")
            
            # Simulate dataset loading progress
            for i in range(0, 100, 25):
                time.sleep(0.2)  # Simulate work being done
                loading_dataset_bar.progress(i + 25)

            # Load dataset and monitor CPU and memory
            df, total_rows = load_dataset_with_limit(dataset_name, st.session_state.dataset_number, st.session_state.search_in_small_objects, limit=dataset_limit)
            
            # Store loaded dataset in session state
            st.session_state.df = df
            loading_dataset_bar.progress(100)
            loading_dataset_text.text("Dataset loaded successfully!")
            st.success(f"Dataset loaded successfully with {len(df)} rows.")
            
            # Display CPU and memory usage
            display_usage()
            
        except Exception as e:
            st.error(f"Failed to load dataset: {e}")
    
    
    # Input search query
    query = st.text_input("Enter your search query")

    # Number of results to display
    limit = st.number_input("Number of results to display", min_value=1, max_value=10, value=10)

    # Search button
    if st.button("Search"):
        # Validate input
        if not query:
            st.warning("Please enter a search query.")
        else:
            try:
                # Progress bar for search
                search_loading_text = st.empty()
                search_loading_text.text("Searching...")
                search_progress_bar = st.progress(0)

                # Perform search on the loaded dataset from session state
                df = st.session_state.df
                if st.session_state.search_in_small_objects:
                    results = search(query, df, limit)
                    top_k_paths = get_file_paths(df, results)
                    top_k_cordinates = get_cordinates(df, results)
                else:
                    # Normal Search
                    results = search(query, df, limit)
                    top_k_paths = get_file_paths(df, results)

                # Complete the search progress
                search_progress_bar.progress(100)
                search_loading_text.text("Search completed!")

                # Load Images with Bounding Boxes if applicable
                if st.session_state.search_in_small_objects and top_k_paths and top_k_cordinates:
                    get_images_with_bounding_boxes_from_s3(bucket_name, top_k_paths, top_k_cordinates, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, folder_path)
                elif not st.session_state.search_in_small_objects and top_k_paths:
                    st.write(f"Displaying top {len(top_k_paths)} results for query '{query}':")
                    get_images_from_s3_to_display(bucket_name, top_k_paths, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, folder_path)
                    
                else:
                    st.write("No results found.")

                # Display CPU and memory usage
                display_usage()

            except Exception as e:
                st.error(f"Search failed: {e}")

if __name__ == "__main__":
    main()