Spaces:
Sleeping
Sleeping
Added small object search, and also new loading features
Browse filesWe will only load x number of rows randomly from dataset instead of all because of limited memory
app.py
CHANGED
@@ -1,110 +1,127 @@
|
|
1 |
import streamlit as st
|
2 |
-
from helper import
|
|
|
|
|
|
|
|
|
3 |
import os
|
4 |
import time
|
5 |
|
6 |
# Load environment variables
|
7 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
8 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
|
|
9 |
# Predefined list of datasets
|
10 |
-
datasets = ["WayveScenes","MajorTom-Europe"]
|
11 |
description = {
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
# AWS S3 bucket name
|
16 |
bucket_name = "datasets-quasara-io"
|
17 |
|
18 |
# Streamlit App
|
19 |
def main():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
st.title("Semantic Search and Image Display")
|
21 |
|
22 |
# Select dataset from dropdown
|
23 |
dataset_name = st.selectbox("Select Dataset", datasets)
|
24 |
-
|
25 |
if dataset_name == 'StopSign_test':
|
26 |
folder_path = ""
|
27 |
else:
|
28 |
folder_path = f'{dataset_name}/'
|
29 |
-
st.caption(description[dataset_name]) #trial area
|
30 |
-
# Progress bar for loading dataset
|
31 |
-
loading_text = st.empty() # Placeholder for dynamic text
|
32 |
-
loading_text.text("Loading dataset...")
|
33 |
-
progress_bar = st.progress(0)
|
34 |
-
|
35 |
-
# Simulate dataset loading progress
|
36 |
-
for i in range(0, 100, 25):
|
37 |
-
time.sleep(0.2) # Simulate work being done
|
38 |
-
progress_bar.progress(i + 25)
|
39 |
-
|
40 |
-
# Load the selected dataset
|
41 |
-
dataset = load_dataset(f"quasara-io/{dataset_name}")
|
42 |
|
43 |
-
|
44 |
-
progress_bar.progress(100)
|
45 |
-
loading_text.text("Dataset loaded successfully!")
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
# Input search query
|
48 |
query = st.text_input("Enter your search query")
|
49 |
|
50 |
# Number of results to display
|
51 |
limit = st.number_input("Number of results to display", min_value=1, max_value=10, value=10)
|
52 |
-
|
53 |
-
search_in_small_objects = True
|
54 |
-
st.text("Small Object Search Enabled")
|
55 |
-
else:
|
56 |
-
search_in_small_objects = False
|
57 |
-
st.text("Small Object Search Disabled")
|
58 |
-
|
59 |
# Search button
|
60 |
if st.button("Search"):
|
61 |
# Validate input
|
62 |
if not query:
|
63 |
st.warning("Please enter a search query.")
|
64 |
else:
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
main_df,split_df = parallel_load_and_combine(dataset_keys,dataset)
|
78 |
-
|
79 |
-
#Small Search
|
80 |
-
if search_in_small_objects:
|
81 |
-
# Perform the search
|
82 |
-
results = batch_search(query, split_df)
|
83 |
-
top_k_paths = get_file_paths(split_df,results)
|
84 |
-
top_k_cordinates = get_cordinates(split_df, results)
|
85 |
-
# Complete the search progress
|
86 |
-
search_progress_bar.progress(100)
|
87 |
-
search_loading_text.text("Search completed!")
|
88 |
-
#Load Images with Bounding boxes
|
89 |
-
if top_k_paths and top_k_cordinates:
|
90 |
-
get_images_with_bounding_boxes_from_s3(bucket_name,top_k_paths, top_k_cordinates, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, folder_path)
|
91 |
else:
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
top_k_paths = get_file_paths(main_df, results)
|
97 |
# Complete the search progress
|
98 |
search_progress_bar.progress(100)
|
99 |
search_loading_text.text("Search completed!")
|
100 |
-
|
101 |
-
#
|
102 |
-
if top_k_paths:
|
|
|
|
|
103 |
st.write(f"Displaying top {len(top_k_paths)} results for query '{query}':")
|
104 |
get_images_from_s3_to_display(bucket_name, top_k_paths, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, folder_path)
|
|
|
105 |
else:
|
106 |
st.write("No results found.")
|
107 |
|
108 |
-
|
|
|
|
|
109 |
if __name__ == "__main__":
|
110 |
-
main()
|
|
|
1 |
import streamlit as st
|
2 |
+
from helper import (
|
3 |
+
load_dataset, search, get_file_paths,
|
4 |
+
get_cordinates, get_images_from_s3_to_display,
|
5 |
+
get_images_with_bounding_boxes_from_s3, load_dataset_with_limit
|
6 |
+
)
|
7 |
import os
|
8 |
import time
|
9 |
|
10 |
# Load environment variables
|
11 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
12 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
13 |
+
|
14 |
# Predefined list of datasets
|
15 |
+
datasets = ["WayveScenes", "MajorTom-Europe"]
|
16 |
description = {
|
17 |
+
"StopSign_test": "A test dataset for me",
|
18 |
+
"WayveScenes": "A large-scale dataset featuring diverse urban driving scenes, captured from autonomous vehicles to advance AI perception and navigation in complex environments.",
|
19 |
+
"MajorTom-Europe": "A geospatial dataset containing satellite imagery from across Europe, designed for tasks like land-use classification, environmental monitoring, and earth observation analytics."
|
20 |
+
}
|
21 |
+
selection = {
|
22 |
+
'WayveScenes': [1, 8],
|
23 |
+
"MajorTom-Europe": [1, 18]
|
24 |
+
}
|
25 |
+
|
26 |
# AWS S3 bucket name
|
27 |
bucket_name = "datasets-quasara-io"
|
28 |
|
29 |
# Streamlit App
|
30 |
def main():
|
31 |
+
# Initialize session state variables if not already initialized
|
32 |
+
if 'search_in_small_objects' not in st.session_state:
|
33 |
+
st.session_state.search_in_small_objects = False
|
34 |
+
|
35 |
+
if 'dataset_number' not in st.session_state:
|
36 |
+
st.session_state.dataset_number = 1
|
37 |
+
|
38 |
+
if 'df' not in st.session_state:
|
39 |
+
st.session_state.df = None
|
40 |
+
|
41 |
st.title("Semantic Search and Image Display")
|
42 |
|
43 |
# Select dataset from dropdown
|
44 |
dataset_name = st.selectbox("Select Dataset", datasets)
|
45 |
+
|
46 |
if dataset_name == 'StopSign_test':
|
47 |
folder_path = ""
|
48 |
else:
|
49 |
folder_path = f'{dataset_name}/'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
st.caption(description[dataset_name])
|
|
|
|
|
52 |
|
53 |
+
if st.checkbox("Enable Small Object Search", value=st.session_state.search_in_small_objects):
|
54 |
+
st.session_state.search_in_small_objects = True
|
55 |
+
st.text("Small Object Search Enabled")
|
56 |
+
st.session_state.dataset_number = st.selectbox("Select Subset of Data", list(range(1, selection[dataset_name][1] + 1)))
|
57 |
+
st.text(f"You have selected Split Dataset {st.session_state.dataset_number}")
|
58 |
+
else:
|
59 |
+
st.session_state.search_in_small_objects = False
|
60 |
+
st.text("Small Object Search Disabled")
|
61 |
+
st.session_state.dataset_number = st.selectbox("Select Subset of Data", list(range(1, selection[dataset_name][0] + 1)))
|
62 |
+
st.text(f"You have selected Main Dataset {st.session_state.dataset_number}")
|
63 |
+
|
64 |
+
|
65 |
+
dataset_limit = st.slider("Size of Dataset to be searched from", min_value=1000, max_value=10000, value=5000)
|
66 |
+
st.text(f'The smaller the dataset the faster the search will work.')
|
67 |
+
|
68 |
+
# Load dataset with limit only if not already loaded
|
69 |
+
if st.button("Load Dataset"):
|
70 |
+
try:
|
71 |
+
df, total_rows = load_dataset_with_limit(dataset_name, st.session_state.dataset_number, st.session_state.search_in_small_objects, limit=dataset_limit)
|
72 |
+
# Store loaded dataset in session state
|
73 |
+
st.session_state.df = df
|
74 |
+
st.success(f"Dataset loaded successfully with {len(df)} rows.")
|
75 |
+
|
76 |
+
except Exception as e:
|
77 |
+
st.error(f"Failed to load dataset: {e}")
|
78 |
+
|
79 |
+
|
80 |
# Input search query
|
81 |
query = st.text_input("Enter your search query")
|
82 |
|
83 |
# Number of results to display
|
84 |
limit = st.number_input("Number of results to display", min_value=1, max_value=10, value=10)
|
85 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
# Search button
|
87 |
if st.button("Search"):
|
88 |
# Validate input
|
89 |
if not query:
|
90 |
st.warning("Please enter a search query.")
|
91 |
else:
|
92 |
+
try:
|
93 |
+
# Progress bar for search
|
94 |
+
search_loading_text = st.empty()
|
95 |
+
search_loading_text.text("Searching...")
|
96 |
+
search_progress_bar = st.progress(0)
|
97 |
+
|
98 |
+
# Perform search on the loaded dataset from session state
|
99 |
+
df = st.session_state.df
|
100 |
+
if st.session_state.search_in_small_objects:
|
101 |
+
results = search(query, df, limit)
|
102 |
+
top_k_paths = get_file_paths(df, results)
|
103 |
+
top_k_cordinates = get_cordinates(df, results)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
else:
|
105 |
+
# Normal Search
|
106 |
+
results = search(query, df, limit)
|
107 |
+
top_k_paths = get_file_paths(df, results)
|
108 |
+
|
|
|
109 |
# Complete the search progress
|
110 |
search_progress_bar.progress(100)
|
111 |
search_loading_text.text("Search completed!")
|
112 |
+
|
113 |
+
# Load Images with Bounding Boxes if applicable
|
114 |
+
if st.session_state.search_in_small_objects and top_k_paths and top_k_cordinates:
|
115 |
+
get_images_with_bounding_boxes_from_s3(bucket_name, top_k_paths, top_k_cordinates, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, folder_path)
|
116 |
+
elif not st.session_state.search_in_small_objects and top_k_paths:
|
117 |
st.write(f"Displaying top {len(top_k_paths)} results for query '{query}':")
|
118 |
get_images_from_s3_to_display(bucket_name, top_k_paths, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, folder_path)
|
119 |
+
|
120 |
else:
|
121 |
st.write("No results found.")
|
122 |
|
123 |
+
except Exception as e:
|
124 |
+
st.error(f"Search failed: {e}")
|
125 |
+
|
126 |
if __name__ == "__main__":
|
127 |
+
main()
|