Spaces:
Runtime error
Runtime error
File size: 4,344 Bytes
7e02e28 20f10b4 707702f 20f10b4 345110e 707702f 20f10b4 7e02e28 345110e 7e02e28 6015b45 7e02e28 20f10b4 707702f 20f10b4 7e02e28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import gradio as gr
from gradio_client import Client
import os
import json
import datasets
def save_to_dataset(image_path, question, answer_p2s_base, answer_p2s_large, answer_layoutlm, answer_donut):
# Create a dataset dictionary
dataset_dict = {
"image": image_path,
"question": question,
"answer_p2s_base": answer_p2s_base,
"answer_p2s_large": answer_p2s_large,
"answer_layoutlm": answer_layoutlm,
"answer_donut": answer_donut
}
# Convert the dictionary to a Dataset object
dataset = datasets.Dataset.from_dict(dataset_dict)
# Save the dataset to Hugging Face
dataset.save_to_disk("img_question_dataset")
def generate_answer(image_path, question, model_name, space_id):
try:
if model_name == "qtoino-pix2struct":
client = Client(f"https://{model_name}.hf.space/--replicas/uax51/")
else:
client = Client(f"https://{model_name}.hf.space/")
result = client.predict(image_path, question, api_name="/predict")
if result.endswith(".json"):
with open(result, "rb") as json_file:
output = json.loads(json_file.read())
if model_name == "TusharGoel-LayoutLM-DocVQA":
return output["label"]
else:
return output["answer"]
else:
return result
except Exception:
gr.Warning(f"The {model_name} Space is currently unavailable. Please try again later.")
return ""
def generate_answers(image_path, question):
answer_p2s_base = generate_answer(image_path, question, model_name = "qtoino-pix2struct", space_id = "Pix2Struct")
answer_p2s_large = generate_answer(image_path, question, model_name = "akdeniz27-pix2struct-DocVQA", space_id = "Pix2Struct Large")
answer_layoutlm = generate_answer(image_path, question, model_name = "TusharGoel-LayoutLM-DocVQA", space_id = "LayoutLM DocVQA")
answer_donut = generate_answer(image_path, question, model_name = "nielsr-donut-docvqa", space_id = "Donut DocVQA")
# Save the data to the dataset
save_to_dataset(image_path, question, answer_p2s_base, answer_p2s_large, answer_layoutlm, answer_donut)
return answer_p2s_base, answer_p2s_large, answer_layoutlm, answer_donut
examples = [["docvqa_example.png", "How many items are sold?"], ["document-question-answering-input.png", "What is the objective?"]]
title = "# Interactive demo: comparing document question answering (VQA) models"
css = """
#mkd {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("<h1><center>Compare Document Question Answering Models 📄<center><h1>")
gr.HTML("<h3><center>Document question answering is the task of answering questions from documents in visual form. 📔📕</h3>")
gr.HTML("<h3><center>To try this Space, simply upload documents and questions. </h3>")
gr.HTML("<h3><center>If prompted to wait and try again, please try again. This Space uses other Spaces as APIs, so it might take time to get those Spaces up and running if they're stopped. </h3>")
with gr.Row():
with gr.Column():
input_image = gr.Image(label = "Input Document", type="filepath")
question = gr.Textbox(label = "question")
run_button = gr.Button("Answer")
with gr.Column():
out_p2s_base = gr.Textbox(label="Answer generated by Pix2Struct Base")
out_p2s_large = gr.Textbox(label="Answer generated by Pix2Struct Large")
out_layoutlm = gr.Textbox(label="Answer generated by LayoutLM")
out_donut = gr.Textbox(label="Answer generated by Donut")
outputs = [
out_p2s_base,
out_p2s_large,
out_layoutlm,
out_donut,
]
gr.Examples(
examples = [["docvqa_example.png", "How many items are sold?"],
["document-question-answering-input.png", "What is the objective?"]],
inputs=[input_image, question],
outputs=outputs,
fn=generate_answers,
cache_examples=True
)
run_button.click(
fn=generate_answers,
inputs=[input_image,question],
outputs=outputs
)
if __name__ == "__main__":
demo.queue().launch(debug=True) |