qtoino commited on
Commit
20f10b4
·
verified ·
1 Parent(s): 6015b45

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -0
app.py CHANGED
@@ -3,6 +3,25 @@ from gradio_client import Client
3
  import os
4
  import json
5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
  def generate_answer(image_path, question, model_name, space_id):
8
  try:
@@ -31,6 +50,9 @@ def generate_answers(image_path, question):
31
 
32
  answer_donut = generate_answer(image_path, question, model_name = "nielsr-donut-docvqa", space_id = "Donut DocVQA")
33
 
 
 
 
34
  return answer_p2s_base, answer_p2s_large, answer_layoutlm, answer_donut
35
 
36
  examples = [["docvqa_example.png", "How many items are sold?"], ["document-question-answering-input.png", "What is the objective?"]]
 
3
  import os
4
  import json
5
 
6
+ import datasets
7
+
8
+ def save_to_dataset(images, questions, answer_p2s_base, answer_p2s_large, answer_layoutlm, answer_donut):
9
+ # Create a dataset dictionary
10
+ dataset_dict = {
11
+ "image": images,
12
+ "question": questions,
13
+ "answer_p2s_base": answer_p2s_base,
14
+ "answer_p2s_large": answer_p2s_large,
15
+ "answer_layoutlm": answer_layoutlm,
16
+ "answer_donut": answer_donut
17
+ }
18
+
19
+ # Convert the dictionary to a Dataset object
20
+ dataset = datasets.Dataset.from_dict(dataset_dict)
21
+
22
+ # Save the dataset to Hugging Face
23
+ dataset.save_to_disk("img_question_dataset")
24
+
25
 
26
  def generate_answer(image_path, question, model_name, space_id):
27
  try:
 
50
 
51
  answer_donut = generate_answer(image_path, question, model_name = "nielsr-donut-docvqa", space_id = "Donut DocVQA")
52
 
53
+ # Save the data to the dataset
54
+ save_to_dataset(images, questions, answer_p2s_base, answer_p2s_large, answer_layoutlm, answer_donut)
55
+
56
  return answer_p2s_base, answer_p2s_large, answer_layoutlm, answer_donut
57
 
58
  examples = [["docvqa_example.png", "How many items are sold?"], ["document-question-answering-input.png", "What is the objective?"]]