update
Browse files
examples/silero_vad_by_webrtcvad/yaml/config.yaml
CHANGED
@@ -8,8 +8,10 @@ hop_size: 80
|
|
8 |
win_type: hann
|
9 |
|
10 |
# model
|
11 |
-
|
12 |
-
|
|
|
|
|
13 |
|
14 |
# lsnr
|
15 |
n_frame: 3
|
|
|
8 |
win_type: hann
|
9 |
|
10 |
# model
|
11 |
+
hidden_size: 80
|
12 |
+
kernel_size:
|
13 |
+
- 3
|
14 |
+
- 3
|
15 |
|
16 |
# lsnr
|
17 |
n_frame: 3
|
main.py
CHANGED
@@ -240,10 +240,10 @@ def main():
|
|
240 |
with gr.Row():
|
241 |
vad_start_ring_rate = gr.Slider(minimum=0, maximum=1, value=0.5, step=0.1, label="start_ring_rate")
|
242 |
vad_end_ring_rate = gr.Slider(minimum=0, maximum=1, value=0.3, step=0.1, label="end_ring_rate")
|
243 |
-
vad_min_silence_length = gr.Number(value=
|
244 |
with gr.Row():
|
245 |
vad_max_speech_length = gr.Number(value=100000, label="max_speech_length")
|
246 |
-
vad_min_speech_length = gr.Number(value=
|
247 |
vad_engine = gr.Dropdown(choices=vad_engine_choices, value=vad_engine_choices[0], label="engine")
|
248 |
vad_button = gr.Button(variant="primary")
|
249 |
with gr.Column(variant="panel", scale=5):
|
|
|
240 |
with gr.Row():
|
241 |
vad_start_ring_rate = gr.Slider(minimum=0, maximum=1, value=0.5, step=0.1, label="start_ring_rate")
|
242 |
vad_end_ring_rate = gr.Slider(minimum=0, maximum=1, value=0.3, step=0.1, label="end_ring_rate")
|
243 |
+
vad_min_silence_length = gr.Number(value=30, label="min_silence_length")
|
244 |
with gr.Row():
|
245 |
vad_max_speech_length = gr.Number(value=100000, label="max_speech_length")
|
246 |
+
vad_min_speech_length = gr.Number(value=15, label="min_speech_length")
|
247 |
vad_engine = gr.Dropdown(choices=vad_engine_choices, value=vad_engine_choices[0], label="engine")
|
248 |
vad_button = gr.Button(variant="primary")
|
249 |
with gr.Column(variant="panel", scale=5):
|
toolbox/torchaudio/models/vad/silero_vad/configuration_silero_vad.py
CHANGED
@@ -15,6 +15,7 @@ class SileroVadConfig(PretrainedConfig):
|
|
15 |
|
16 |
in_channels: int = 64,
|
17 |
hidden_size: int = 128,
|
|
|
18 |
|
19 |
n_frame: int = 3,
|
20 |
min_local_snr_db: float = -15,
|
@@ -49,6 +50,7 @@ class SileroVadConfig(PretrainedConfig):
|
|
49 |
# encoder
|
50 |
self.in_channels = in_channels
|
51 |
self.hidden_size = hidden_size
|
|
|
52 |
|
53 |
# lsnr
|
54 |
self.n_frame = n_frame
|
|
|
15 |
|
16 |
in_channels: int = 64,
|
17 |
hidden_size: int = 128,
|
18 |
+
kernel_size: Tuple[int, int] = (3, 3),
|
19 |
|
20 |
n_frame: int = 3,
|
21 |
min_local_snr_db: float = -15,
|
|
|
50 |
# encoder
|
51 |
self.in_channels = in_channels
|
52 |
self.hidden_size = hidden_size
|
53 |
+
self.kernel_size = kernel_size
|
54 |
|
55 |
# lsnr
|
56 |
self.n_frame = n_frame
|
toolbox/torchaudio/models/vad/silero_vad/modeling_silero_vad.py
CHANGED
@@ -8,8 +8,9 @@ https://github.com/snakers4/silero-vad
|
|
8 |
|
9 |
https://github.com/snakers4/silero-vad/blob/master/src/silero_vad/data/silero_vad.jit
|
10 |
"""
|
|
|
11 |
import os
|
12 |
-
from typing import Optional, Union
|
13 |
|
14 |
import torch
|
15 |
import torch.nn as nn
|
@@ -24,61 +25,153 @@ from toolbox.torchaudio.modules.local_snr_target import LocalSnrTarget
|
|
24 |
MODEL_FILE = "model.pt"
|
25 |
|
26 |
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
def __init__(self,
|
29 |
-
in_channels: int
|
30 |
-
out_channels: int
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
):
|
32 |
-
super(
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
kernel_size
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
)
|
39 |
-
self.activation = nn.ReLU()
|
40 |
-
self.norm = nn.BatchNorm1d(out_channels)
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
|
|
|
|
|
55 |
|
|
|
56 |
|
57 |
-
|
|
|
58 |
def __init__(self,
|
59 |
-
|
60 |
-
out_channels: int = 128,
|
61 |
num_layers: int = 3,
|
62 |
):
|
63 |
-
super(
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
69 |
)
|
70 |
if i == 0 else
|
71 |
-
|
72 |
-
in_channels=
|
73 |
-
out_channels=
|
|
|
|
|
|
|
|
|
74 |
)
|
75 |
for i in range(num_layers)
|
76 |
])
|
77 |
|
78 |
-
def forward(self, x: torch.Tensor):
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
|
84 |
class SileroVadModel(nn.Module):
|
@@ -89,8 +182,8 @@ class SileroVadModel(nn.Module):
|
|
89 |
hop_size: int,
|
90 |
win_type: int,
|
91 |
|
92 |
-
in_channels: int,
|
93 |
hidden_size: int,
|
|
|
94 |
|
95 |
n_frame: int,
|
96 |
min_local_snr_db: float,
|
@@ -104,8 +197,8 @@ class SileroVadModel(nn.Module):
|
|
104 |
self.hop_size = hop_size
|
105 |
self.win_type = win_type
|
106 |
|
107 |
-
self.in_channels = in_channels
|
108 |
self.hidden_size = hidden_size
|
|
|
109 |
|
110 |
self.n_frame = n_frame
|
111 |
self.min_local_snr_db = min_local_snr_db
|
@@ -132,12 +225,11 @@ class SileroVadModel(nn.Module):
|
|
132 |
|
133 |
self.linear = nn.Linear(
|
134 |
in_features=(self.nfft // 2 + 1),
|
135 |
-
out_features=self.
|
136 |
)
|
137 |
|
138 |
-
self.encoder =
|
139 |
-
|
140 |
-
out_channels=self.hidden_size,
|
141 |
)
|
142 |
|
143 |
self.lstm = nn.LSTM(
|
@@ -190,8 +282,8 @@ class SileroVadModel(nn.Module):
|
|
190 |
x = self.linear.forward(x)
|
191 |
# x shape: [b, t, f']
|
192 |
|
193 |
-
x = self.encoder.forward(x)
|
194 |
-
# x shape: [b, t, f]
|
195 |
|
196 |
x, _ = self.lstm.forward(x)
|
197 |
|
@@ -246,8 +338,8 @@ class SileroVadPretrainedModel(SileroVadModel):
|
|
246 |
win_size=config.win_size,
|
247 |
hop_size=config.hop_size,
|
248 |
win_type=config.win_type,
|
249 |
-
in_channels=config.in_channels,
|
250 |
hidden_size=config.hidden_size,
|
|
|
251 |
n_frame=config.n_frame,
|
252 |
min_local_snr_db=config.min_local_snr_db,
|
253 |
max_local_snr_db=config.max_local_snr_db,
|
|
|
8 |
|
9 |
https://github.com/snakers4/silero-vad/blob/master/src/silero_vad/data/silero_vad.jit
|
10 |
"""
|
11 |
+
import math
|
12 |
import os
|
13 |
+
from typing import List, Optional, Union, Iterable, Tuple
|
14 |
|
15 |
import torch
|
16 |
import torch.nn as nn
|
|
|
25 |
MODEL_FILE = "model.pt"
|
26 |
|
27 |
|
28 |
+
norm_layer_dict = {
|
29 |
+
"batch_norm_2d": torch.nn.BatchNorm2d
|
30 |
+
}
|
31 |
+
|
32 |
+
|
33 |
+
activation_layer_dict = {
|
34 |
+
"relu": torch.nn.ReLU,
|
35 |
+
"identity": torch.nn.Identity,
|
36 |
+
"sigmoid": torch.nn.Sigmoid,
|
37 |
+
}
|
38 |
+
|
39 |
+
|
40 |
+
class CausalConv2d(nn.Module):
|
41 |
def __init__(self,
|
42 |
+
in_channels: int,
|
43 |
+
out_channels: int,
|
44 |
+
kernel_size: Union[int, Iterable[int]],
|
45 |
+
fstride: int = 1,
|
46 |
+
dilation: int = 1,
|
47 |
+
pad_f_dim: bool = True,
|
48 |
+
bias: bool = True,
|
49 |
+
separable: bool = False,
|
50 |
+
norm_layer: str = "batch_norm_2d",
|
51 |
+
activation_layer: str = "relu",
|
52 |
):
|
53 |
+
super(CausalConv2d, self).__init__()
|
54 |
+
kernel_size = (kernel_size, kernel_size) if isinstance(kernel_size, int) else tuple(kernel_size)
|
55 |
+
|
56 |
+
if pad_f_dim:
|
57 |
+
fpad = kernel_size[1] // 2 + dilation - 1
|
58 |
+
else:
|
59 |
+
fpad = 0
|
60 |
+
|
61 |
+
# for last 2 dim, pad (left, right, top, bottom).
|
62 |
+
self.lookback = kernel_size[0] - 1
|
63 |
+
if self.lookback > 0:
|
64 |
+
self.tpad = nn.ConstantPad2d(padding=(0, 0, self.lookback, 0), value=0.0)
|
65 |
+
else:
|
66 |
+
self.tpad = nn.Identity()
|
67 |
+
|
68 |
+
groups = math.gcd(in_channels, out_channels) if separable else 1
|
69 |
+
if groups == 1:
|
70 |
+
separable = False
|
71 |
+
if max(kernel_size) == 1:
|
72 |
+
separable = False
|
73 |
+
|
74 |
+
self.conv = nn.Conv2d(
|
75 |
+
in_channels,
|
76 |
+
out_channels,
|
77 |
+
kernel_size=kernel_size,
|
78 |
+
padding=(0, fpad),
|
79 |
+
stride=(1, fstride), # stride over time is always 1
|
80 |
+
dilation=(1, dilation), # dilation over time is always 1
|
81 |
+
groups=groups,
|
82 |
+
bias=bias,
|
83 |
)
|
|
|
|
|
84 |
|
85 |
+
if separable:
|
86 |
+
self.convp = nn.Conv2d(
|
87 |
+
out_channels,
|
88 |
+
out_channels,
|
89 |
+
kernel_size=1,
|
90 |
+
bias=False,
|
91 |
+
)
|
92 |
+
else:
|
93 |
+
self.convp = nn.Identity()
|
94 |
|
95 |
+
if norm_layer is not None:
|
96 |
+
norm_layer = norm_layer_dict[norm_layer]
|
97 |
+
self.norm = norm_layer(out_channels)
|
98 |
+
else:
|
99 |
+
self.norm = nn.Identity()
|
100 |
|
101 |
+
if activation_layer is not None:
|
102 |
+
activation_layer = activation_layer_dict[activation_layer]
|
103 |
+
self.activation = activation_layer()
|
104 |
+
else:
|
105 |
+
self.activation = nn.Identity()
|
106 |
+
|
107 |
+
def forward(self, inputs: torch.Tensor, cache: torch.Tensor = None):
|
108 |
+
"""
|
109 |
+
:param inputs: shape: [b, c, t, f]
|
110 |
+
:param cache: shape: [b, c, lookback, f];
|
111 |
+
:return:
|
112 |
+
"""
|
113 |
+
x = inputs
|
114 |
+
|
115 |
+
if cache is None:
|
116 |
+
x = self.tpad(x)
|
117 |
+
else:
|
118 |
+
x = torch.concat(tensors=[cache, x], dim=2)
|
119 |
+
|
120 |
+
new_cache = None
|
121 |
+
if self.lookback > 0:
|
122 |
+
new_cache = x[:, :, -self.lookback:, :]
|
123 |
+
|
124 |
+
x = self.conv(x)
|
125 |
|
126 |
+
x = self.convp(x)
|
127 |
+
x = self.norm(x)
|
128 |
+
x = self.activation(x)
|
129 |
|
130 |
+
return x, new_cache
|
131 |
|
132 |
+
|
133 |
+
class CausalEncoder(nn.Module):
|
134 |
def __init__(self,
|
135 |
+
kernel_size: Tuple[int, int] = (3, 3),
|
|
|
136 |
num_layers: int = 3,
|
137 |
):
|
138 |
+
super(CausalEncoder, self).__init__()
|
139 |
+
self.layers: List[CausalConv2d] = nn.ModuleList(modules=[
|
140 |
+
CausalConv2d(
|
141 |
+
in_channels=1,
|
142 |
+
out_channels=1,
|
143 |
+
kernel_size=kernel_size,
|
144 |
+
bias=False,
|
145 |
+
separable=True,
|
146 |
+
fstride=1,
|
147 |
)
|
148 |
if i == 0 else
|
149 |
+
CausalConv2d(
|
150 |
+
in_channels=1,
|
151 |
+
out_channels=1,
|
152 |
+
kernel_size=kernel_size,
|
153 |
+
bias=False,
|
154 |
+
separable=True,
|
155 |
+
fstride=1,
|
156 |
)
|
157 |
for i in range(num_layers)
|
158 |
])
|
159 |
|
160 |
+
def forward(self, x: torch.Tensor, cache_list: List[torch.Tensor] = None):
|
161 |
+
# x shape: [b, t, f]
|
162 |
+
x = torch.unsqueeze(x, dim=1)
|
163 |
+
# x shape: [b, c, t, f]
|
164 |
+
|
165 |
+
new_cache_list = list()
|
166 |
+
for idx, layer in enumerate(self.layers):
|
167 |
+
cache = None if cache_list is None else cache_list[idx]
|
168 |
+
x, new_cache = layer.forward(x, cache=cache)
|
169 |
+
new_cache_list.append(new_cache)
|
170 |
+
|
171 |
+
# x shape: [b, c, t, f]
|
172 |
+
x = torch.squeeze(x, dim=1)
|
173 |
+
# x shape: [b, t, f]
|
174 |
+
return x, new_cache_list
|
175 |
|
176 |
|
177 |
class SileroVadModel(nn.Module):
|
|
|
182 |
hop_size: int,
|
183 |
win_type: int,
|
184 |
|
|
|
185 |
hidden_size: int,
|
186 |
+
kernel_size: Tuple[int, int],
|
187 |
|
188 |
n_frame: int,
|
189 |
min_local_snr_db: float,
|
|
|
197 |
self.hop_size = hop_size
|
198 |
self.win_type = win_type
|
199 |
|
|
|
200 |
self.hidden_size = hidden_size
|
201 |
+
self.kernel_size = kernel_size
|
202 |
|
203 |
self.n_frame = n_frame
|
204 |
self.min_local_snr_db = min_local_snr_db
|
|
|
225 |
|
226 |
self.linear = nn.Linear(
|
227 |
in_features=(self.nfft // 2 + 1),
|
228 |
+
out_features=self.hidden_size,
|
229 |
)
|
230 |
|
231 |
+
self.encoder = CausalEncoder(
|
232 |
+
kernel_size=(3, 3),
|
|
|
233 |
)
|
234 |
|
235 |
self.lstm = nn.LSTM(
|
|
|
282 |
x = self.linear.forward(x)
|
283 |
# x shape: [b, t, f']
|
284 |
|
285 |
+
x, _ = self.encoder.forward(x)
|
286 |
+
# x shape: [b, t, f']
|
287 |
|
288 |
x, _ = self.lstm.forward(x)
|
289 |
|
|
|
338 |
win_size=config.win_size,
|
339 |
hop_size=config.hop_size,
|
340 |
win_type=config.win_type,
|
|
|
341 |
hidden_size=config.hidden_size,
|
342 |
+
kernel_size=config.kernel_size,
|
343 |
n_frame=config.n_frame,
|
344 |
min_local_snr_db=config.min_local_snr_db,
|
345 |
max_local_snr_db=config.max_local_snr_db,
|
toolbox/torchaudio/models/vad/silero_vad/yaml/config.yaml
CHANGED
@@ -8,8 +8,10 @@ hop_size: 80
|
|
8 |
win_type: hann
|
9 |
|
10 |
# model
|
11 |
-
|
12 |
-
|
|
|
|
|
13 |
|
14 |
# lsnr
|
15 |
n_frame: 3
|
|
|
8 |
win_type: hann
|
9 |
|
10 |
# model
|
11 |
+
hidden_size: 80
|
12 |
+
kernel_size:
|
13 |
+
- 3
|
14 |
+
- 3
|
15 |
|
16 |
# lsnr
|
17 |
n_frame: 3
|