update
Browse files- main.py +43 -10
- toolbox/vad/utils.py +135 -0
main.py
CHANGED
@@ -23,6 +23,7 @@ from toolbox.os.command import Command
|
|
23 |
from toolbox.torchaudio.models.vad.fsmn_vad.inference_fsmn_vad_onnx import InferenceFSMNVadOnnx
|
24 |
from toolbox.torchaudio.models.vad.silero_vad.inference_silero_vad import InferenceSileroVad
|
25 |
from toolbox.torchaudio.utils.visualization import process_speech_probs
|
|
|
26 |
|
27 |
log.setup_size_rotating(log_directory=log_directory, tz_info=time_zone_info)
|
28 |
|
@@ -98,7 +99,12 @@ def generate_image(signal: np.ndarray, speech_probs: np.ndarray, sample_rate: in
|
|
98 |
return temp_file.name
|
99 |
|
100 |
|
101 |
-
def when_click_vad_button(audio_file_t = None, audio_microphone_t = None,
|
|
|
|
|
|
|
|
|
|
|
102 |
if audio_file_t is None and audio_microphone_t is None:
|
103 |
raise gr.Error(f"audio file and microphone is null.")
|
104 |
if audio_file_t is not None and audio_microphone_t is not None:
|
@@ -136,15 +142,28 @@ def when_click_vad_button(audio_file_t = None, audio_microphone_t = None, engine
|
|
136 |
lsnr = lsnr / 30
|
137 |
|
138 |
frame_step = infer_engine.config.hop_size
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
except Exception as e:
|
145 |
raise gr.Error(f"vad failed, error type: {type(e)}, error text: {str(e)}.")
|
146 |
|
147 |
-
return probs_image, lsnr_image, message
|
148 |
|
149 |
|
150 |
def main():
|
@@ -218,22 +237,36 @@ def main():
|
|
218 |
with gr.TabItem("microphone"):
|
219 |
vad_audio_microphone = gr.Audio(sources="microphone", label="audio")
|
220 |
|
221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
vad_button = gr.Button(variant="primary")
|
223 |
with gr.Column(variant="panel", scale=5):
|
224 |
vad_vad_image = gr.Image(label="vad")
|
|
|
225 |
vad_lsnr_image = gr.Image(label="lsnr")
|
226 |
vad_message = gr.Textbox(lines=1, max_lines=20, label="message")
|
227 |
|
228 |
vad_button.click(
|
229 |
when_click_vad_button,
|
230 |
-
inputs=[
|
231 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
)
|
233 |
gr.Examples(
|
234 |
examples=examples,
|
235 |
inputs=[vad_audio_file, vad_audio_microphone, vad_engine],
|
236 |
-
outputs=[vad_vad_image, vad_lsnr_image, vad_message],
|
237 |
fn=when_click_vad_button,
|
238 |
# cache_examples=True,
|
239 |
# cache_mode="lazy",
|
|
|
23 |
from toolbox.torchaudio.models.vad.fsmn_vad.inference_fsmn_vad_onnx import InferenceFSMNVadOnnx
|
24 |
from toolbox.torchaudio.models.vad.silero_vad.inference_silero_vad import InferenceSileroVad
|
25 |
from toolbox.torchaudio.utils.visualization import process_speech_probs
|
26 |
+
from toolbox.vad.utils import PostProcess
|
27 |
|
28 |
log.setup_size_rotating(log_directory=log_directory, tz_info=time_zone_info)
|
29 |
|
|
|
99 |
return temp_file.name
|
100 |
|
101 |
|
102 |
+
def when_click_vad_button(audio_file_t = None, audio_microphone_t = None,
|
103 |
+
start_ring_rate: float = 0.5, end_ring_rate: float = 0.3,
|
104 |
+
min_silence_length: int = 2,
|
105 |
+
max_speech_length: int = 10000, min_speech_length: int = 10,
|
106 |
+
engine: str = None,
|
107 |
+
):
|
108 |
if audio_file_t is None and audio_microphone_t is None:
|
109 |
raise gr.Error(f"audio file and microphone is null.")
|
110 |
if audio_file_t is not None and audio_microphone_t is not None:
|
|
|
142 |
lsnr = lsnr / 30
|
143 |
|
144 |
frame_step = infer_engine.config.hop_size
|
145 |
+
probs_ = process_speech_probs(audio, probs, frame_step)
|
146 |
+
probs_image = generate_image(audio, probs_)
|
147 |
+
|
148 |
+
lsnr_ = process_speech_probs(audio, lsnr, frame_step)
|
149 |
+
lsnr_image = generate_image(audio, lsnr_)
|
150 |
+
|
151 |
+
# post process
|
152 |
+
vad_post_process = PostProcess(
|
153 |
+
start_ring_rate=start_ring_rate,
|
154 |
+
end_ring_rate=end_ring_rate,
|
155 |
+
min_silence_length=min_silence_length,
|
156 |
+
max_speech_length=max_speech_length,
|
157 |
+
min_speech_length=min_speech_length
|
158 |
+
)
|
159 |
+
vad = vad_post_process.post_process(probs)
|
160 |
+
vad_ = process_speech_probs(audio, vad, frame_step)
|
161 |
+
vad_image = generate_image(audio, vad_)
|
162 |
|
163 |
except Exception as e:
|
164 |
raise gr.Error(f"vad failed, error type: {type(e)}, error text: {str(e)}.")
|
165 |
|
166 |
+
return vad_image, probs_image, lsnr_image, message
|
167 |
|
168 |
|
169 |
def main():
|
|
|
237 |
with gr.TabItem("microphone"):
|
238 |
vad_audio_microphone = gr.Audio(sources="microphone", label="audio")
|
239 |
|
240 |
+
with gr.Row():
|
241 |
+
vad_start_ring_rate = gr.Slider(minimum=0, maximum=1, value=0.5, step=0.1, label="start_ring_rate")
|
242 |
+
vad_end_ring_rate = gr.Slider(minimum=0, maximum=1, value=0.3, step=0.1, label="end_ring_rate")
|
243 |
+
vad_min_silence_length = gr.Number(value=2, label="min_silence_length")
|
244 |
+
with gr.Row():
|
245 |
+
vad_max_speech_length = gr.Number(value=100000, label="max_speech_length")
|
246 |
+
vad_min_speech_length = gr.Number(value=10, label="min_speech_length")
|
247 |
+
vad_engine = gr.Dropdown(choices=vad_engine_choices, value=vad_engine_choices[0], label="engine")
|
248 |
vad_button = gr.Button(variant="primary")
|
249 |
with gr.Column(variant="panel", scale=5):
|
250 |
vad_vad_image = gr.Image(label="vad")
|
251 |
+
vad_prob_image = gr.Image(label="prob")
|
252 |
vad_lsnr_image = gr.Image(label="lsnr")
|
253 |
vad_message = gr.Textbox(lines=1, max_lines=20, label="message")
|
254 |
|
255 |
vad_button.click(
|
256 |
when_click_vad_button,
|
257 |
+
inputs=[
|
258 |
+
vad_audio_file, vad_audio_microphone,
|
259 |
+
vad_start_ring_rate, vad_end_ring_rate,
|
260 |
+
vad_min_silence_length,
|
261 |
+
vad_max_speech_length, vad_min_speech_length,
|
262 |
+
vad_engine,
|
263 |
+
],
|
264 |
+
outputs=[vad_vad_image, vad_prob_image, vad_lsnr_image, vad_message],
|
265 |
)
|
266 |
gr.Examples(
|
267 |
examples=examples,
|
268 |
inputs=[vad_audio_file, vad_audio_microphone, vad_engine],
|
269 |
+
outputs=[vad_vad_image, vad_prob_image, vad_lsnr_image, vad_message],
|
270 |
fn=when_click_vad_button,
|
271 |
# cache_examples=True,
|
272 |
# cache_mode="lazy",
|
toolbox/vad/utils.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import collections
|
4 |
+
|
5 |
+
from typing import List, Tuple
|
6 |
+
|
7 |
+
|
8 |
+
class PostProcess(object):
|
9 |
+
def __init__(self,
|
10 |
+
start_ring_rate: float = 0.5,
|
11 |
+
end_ring_rate: float = 0.5,
|
12 |
+
min_silence_length: int = 1,
|
13 |
+
max_speech_length: float = 10,
|
14 |
+
min_speech_length: float = 2,
|
15 |
+
):
|
16 |
+
self.start_ring_rate = start_ring_rate
|
17 |
+
self.end_ring_rate = end_ring_rate
|
18 |
+
self.max_speech_length = max_speech_length
|
19 |
+
self.min_speech_length = min_speech_length
|
20 |
+
self.min_silence_length = min_silence_length
|
21 |
+
|
22 |
+
# segments
|
23 |
+
self.ring_buffer = collections.deque(maxlen=10)
|
24 |
+
self.triggered = False
|
25 |
+
|
26 |
+
# vad segments
|
27 |
+
self.is_first_segment = True
|
28 |
+
self.start_idx: int = -1
|
29 |
+
self.end_idx: int = -1
|
30 |
+
|
31 |
+
# speech probs
|
32 |
+
self.voiced_frames: List[Tuple[int, float]] = list()
|
33 |
+
|
34 |
+
def segments_generator(self, probs: List[float]):
|
35 |
+
for idx, prob in enumerate(probs):
|
36 |
+
if not self.triggered:
|
37 |
+
self.ring_buffer.append((idx, prob))
|
38 |
+
num_voiced = sum([p for _, p in self.ring_buffer])
|
39 |
+
|
40 |
+
if num_voiced > self.start_ring_rate * self.ring_buffer.maxlen:
|
41 |
+
self.triggered = True
|
42 |
+
for idx_prob_t in self.ring_buffer:
|
43 |
+
self.voiced_frames.append(idx_prob_t)
|
44 |
+
continue
|
45 |
+
|
46 |
+
idx_prob_t = (idx, prob)
|
47 |
+
self.voiced_frames.append(idx_prob_t)
|
48 |
+
self.ring_buffer.append(idx_prob_t)
|
49 |
+
num_voiced = sum([p for _, p in self.ring_buffer])
|
50 |
+
|
51 |
+
if num_voiced < self.end_ring_rate * self.ring_buffer.maxlen:
|
52 |
+
segment = [
|
53 |
+
self.voiced_frames[0][0],
|
54 |
+
self.voiced_frames[-1][0],
|
55 |
+
]
|
56 |
+
yield segment
|
57 |
+
self.triggered = False
|
58 |
+
self.ring_buffer.clear()
|
59 |
+
self.voiced_frames: List[Tuple[int, float]] = list()
|
60 |
+
continue
|
61 |
+
|
62 |
+
def vad_segments_generator(self, segments_generator):
|
63 |
+
segments = list(segments_generator)
|
64 |
+
|
65 |
+
for i, segment in enumerate(segments):
|
66 |
+
start = segment[0]
|
67 |
+
end = segment[1]
|
68 |
+
|
69 |
+
if self.start_idx == -1 and self.end_idx == -1:
|
70 |
+
self.start_idx = start
|
71 |
+
self.end_idx = end
|
72 |
+
continue
|
73 |
+
|
74 |
+
if self.end_idx - self.start_idx > self.max_speech_length:
|
75 |
+
end_ = self.start_idx + self.max_speech_length
|
76 |
+
vad_segment = [self.start_idx, end_]
|
77 |
+
yield vad_segment
|
78 |
+
self.start_idx = end_
|
79 |
+
|
80 |
+
silence_length = start - self.end_idx
|
81 |
+
if silence_length < self.min_silence_length:
|
82 |
+
self.end_idx = end
|
83 |
+
continue
|
84 |
+
|
85 |
+
if self.end_idx - self.start_idx < self.min_speech_length:
|
86 |
+
self.start_idx = start
|
87 |
+
self.end_idx = end
|
88 |
+
continue
|
89 |
+
|
90 |
+
vad_segment = [self.start_idx, self.end_idx]
|
91 |
+
yield vad_segment
|
92 |
+
self.start_idx = start
|
93 |
+
self.end_idx = end
|
94 |
+
|
95 |
+
def vad(self, probs: List[float]) -> List[list]:
|
96 |
+
segments = self.segments_generator(probs)
|
97 |
+
vad_segments = self.vad_segments_generator(segments)
|
98 |
+
vad_segments = list(vad_segments)
|
99 |
+
return vad_segments
|
100 |
+
|
101 |
+
def last_vad_segments(self) -> List[list]:
|
102 |
+
# last segments
|
103 |
+
if len(self.voiced_frames) == 0:
|
104 |
+
segments = []
|
105 |
+
else:
|
106 |
+
segment = [
|
107 |
+
self.voiced_frames[0][0],
|
108 |
+
self.voiced_frames[-1][0]
|
109 |
+
]
|
110 |
+
segments = [segment]
|
111 |
+
|
112 |
+
# last vad segments
|
113 |
+
vad_segments = self.vad_segments_generator(segments)
|
114 |
+
vad_segments = list(vad_segments)
|
115 |
+
|
116 |
+
if self.start_idx > 1e-5 and self.end_idx > 1e-5:
|
117 |
+
vad_segments = vad_segments + [[self.start_idx, self.end_idx]]
|
118 |
+
return vad_segments
|
119 |
+
|
120 |
+
def post_process(self, probs: List[float]):
|
121 |
+
vad_segments = list()
|
122 |
+
segments = self.vad(probs)
|
123 |
+
vad_segments += segments
|
124 |
+
segments = self.last_vad_segments()
|
125 |
+
vad_segments += segments
|
126 |
+
|
127 |
+
result = [0] * len(probs)
|
128 |
+
for begin, end in vad_segments:
|
129 |
+
result[begin: end] = [1] * (end - begin)
|
130 |
+
|
131 |
+
return result
|
132 |
+
|
133 |
+
|
134 |
+
if __name__ == "__main__":
|
135 |
+
pass
|