|
--- |
|
title: CC VAD |
|
emoji: 🐢 |
|
colorFrom: purple |
|
colorTo: blue |
|
sdk: docker |
|
pinned: false |
|
license: apache-2.0 |
|
--- |
|
|
|
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference |
|
## CC VAD |
|
|
|
|
|
### datasets |
|
|
|
```text |
|
|
|
AISHELL (15G) |
|
https://openslr.trmal.net/resources/33/ |
|
|
|
AISHELL-3 (19G) |
|
http://www.openslr.org/93/ |
|
|
|
DNS3 |
|
https://github.com/microsoft/DNS-Challenge/blob/master/download-dns-challenge-3.sh |
|
噪音数据来源于 DEMAND, FreeSound, AudioSet. |
|
|
|
MS-SNSD |
|
https://github.com/microsoft/MS-SNSD |
|
噪音数据来源于 DEMAND, FreeSound. |
|
|
|
MUSAN |
|
https://www.openslr.org/17/ |
|
其中包含 music, noise, speech. |
|
music 是一些纯音乐, noise 包含 free-sound, sound-bible, sound-bible部分也许可以做为补充部分. |
|
总的来说, 有用的不部不多, 可能噪音数据仍然需要自己收集为主, 更加可靠. |
|
|
|
CHiME-4 |
|
https://www.chimechallenge.org/challenges/chime4/download.html |
|
|
|
freesound |
|
https://freesound.org/ |
|
|
|
AudioSet |
|
https://research.google.com/audioset/index.html |
|
``` |
|
|
|
|
|
### ### 创建训练容器 |
|
|
|
```text |
|
在容器中训练模型,需要能够从容器中访问到 GPU,参考: |
|
https://hub.docker.com/r/ollama/ollama |
|
|
|
docker run -itd \ |
|
--name cc_vad \ |
|
--network host \ |
|
--gpus all \ |
|
--privileged \ |
|
--ipc=host \ |
|
-v /data/tianxing/HuggingDatasets/nx_noise/data:/data/tianxing/HuggingDatasets/nx_noise/data \ |
|
-v /data/tianxing/PycharmProjects/cc_vad:/data/tianxing/PycharmProjects/cc_vad \ |
|
python:3.12 /bin/bash |
|
|
|
|
|
查看GPU |
|
nvidia-smi |
|
watch -n 1 -d nvidia-smi |
|
|
|
|
|
``` |
|
|
|
```text |
|
在容器中访问 GPU |
|
|
|
参考: |
|
https://blog.csdn.net/footless_bird/article/details/136291344 |
|
步骤: |
|
# 安装 |
|
yum install -y nvidia-container-toolkit |
|
|
|
# 编辑文件 /etc/docker/daemon.json |
|
cat /etc/docker/daemon.json |
|
{ |
|
"data-root": "/data/lib/docker", |
|
"default-runtime": "nvidia", |
|
"runtimes": { |
|
"nvidia": { |
|
"path": "/usr/bin/nvidia-container-runtime", |
|
"runtimeArgs": [] |
|
} |
|
}, |
|
"registry-mirrors": [ |
|
"https://docker.m.daocloud.io", |
|
"https://dockerproxy.com", |
|
"https://docker.mirrors.ustc.edu.cn", |
|
"https://docker.nju.edu.cn" |
|
] |
|
} |
|
|
|
# 重启 docker |
|
systemctl restart docker |
|
systemctl daemon-reload |
|
|
|
# 测试容器内能否访问 GPU. |
|
docker run --gpus all python:3.12-slim nvidia-smi |
|
|
|
# 通过这种方式启动容器, 在容器中, 可以查看到 GPU. 但是容器中没有 GPU驱动 nvidia-smi 不工作. |
|
docker run -it --privileged python:3.12-slim /bin/bash |
|
apt update |
|
apt install -y pciutils |
|
lspci | grep -i nvidia |
|
#00:08.0 3D controller: NVIDIA Corporation TU104GL [Tesla T4] (rev a1) |
|
|
|
# 网上看的是这种启动容器的方式, 但是进去后仍然是 nvidia-smi 不工作. |
|
docker run \ |
|
--device /dev/nvidia0:/dev/nvidia0 \ |
|
--device /dev/nvidiactl:/dev/nvidiactl \ |
|
--device /dev/nvidia-uvm:/dev/nvidia-uvm \ |
|
-v /usr/local/nvidia:/usr/local/nvidia \ |
|
-it --privileged python:3.12-slim /bin/bash |
|
|
|
|
|
# 这种方式进入容器, nvidia-smi 可以工作. 应该关键是 --gpus all 参数. |
|
docker run -itd --gpus all --name open_unsloth python:3.12-slim /bin/bash |
|
docker run -itd --gpus all --name Qwen2-7B-Instruct python:3.12-slim /bin/bash |
|
|
|
``` |
|
|