HoneyTian's picture
first commit
bfa885e
raw
history blame
12.5 kB
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
from collections import defaultdict
import json
import logging
from logging.handlers import TimedRotatingFileHandler
import os
import platform
from pathlib import Path
import random
import sys
import shutil
import tempfile
from typing import List
import zipfile
pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, "../../"))
import numpy as np
import torch
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
from toolbox.torch.modules.loss import FocalLoss, HingeLoss, HingeLinear
from toolbox.torch.training.metrics.categorical_accuracy import CategoricalAccuracy
from toolbox.torch.utils.data.vocabulary import Vocabulary
from toolbox.torch.utils.data.dataset.wave_classifier_excel_dataset import WaveClassifierExcelDataset
from toolbox.torchaudio.models.cnn_audio_classifier.modeling_cnn_audio_classifier import WaveClassifierPretrainedModel
from toolbox.torchaudio.models.cnn_audio_classifier.configuration_cnn_audio_classifier import CnnAudioClassifierConfig
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--vocabulary_dir", default="vocabulary", type=str)
parser.add_argument("--train_dataset", default="train.xlsx", type=str)
parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)
parser.add_argument("--max_epochs", default=100, type=int)
parser.add_argument("--batch_size", default=64, type=int)
parser.add_argument("--learning_rate", default=1e-3, type=float)
parser.add_argument("--num_serialized_models_to_keep", default=10, type=int)
parser.add_argument("--patience", default=5, type=int)
parser.add_argument("--serialization_dir", default="serialization_dir", type=str)
parser.add_argument("--seed", default=0, type=int)
parser.add_argument("--config_file", default="conv2d_classifier.yaml", type=str)
parser.add_argument(
"--pretrained_model",
# default=(project_path / "trained_models/voicemail-en-sg-2-ch4.zip").as_posix(),
default="null",
type=str
)
args = parser.parse_args()
return args
def logging_config(file_dir: str):
fmt = "%(asctime)s - %(name)s - %(levelname)s %(filename)s:%(lineno)d > %(message)s"
logging.basicConfig(format=fmt,
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.DEBUG)
file_handler = TimedRotatingFileHandler(
filename=os.path.join(file_dir, "main.log"),
encoding="utf-8",
when="D",
interval=1,
backupCount=7
)
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(logging.Formatter(fmt))
logger = logging.getLogger(__name__)
logger.addHandler(file_handler)
return logger
class CollateFunction(object):
def __init__(self):
pass
def __call__(self, batch: List[dict]):
array_list = list()
label_list = list()
for sample in batch:
array = sample["waveform"]
label = sample["label"]
l = len(array)
if l < 16000:
delta = int(16000 - l)
array = np.concatenate([array, np.zeros(shape=(delta,), dtype=np.float32)], axis=-1)
if l > 16000:
array = array[:16000]
array_list.append(array)
label_list.append(label)
array_list = torch.stack(array_list)
label_list = torch.stack(label_list)
return array_list, label_list
collate_fn = CollateFunction()
def main():
args = get_args()
serialization_dir = Path(args.serialization_dir)
serialization_dir.mkdir(parents=True, exist_ok=True)
logger = logging_config(serialization_dir)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
logger.info("set seed: {}".format(args.seed))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
logger.info("GPU available count: {}; device: {}".format(n_gpu, device))
vocabulary = Vocabulary.from_files(args.vocabulary_dir)
# datasets
logger.info("prepare datasets")
train_dataset = WaveClassifierExcelDataset(
vocab=vocabulary,
excel_file=args.train_dataset,
category=None,
category_field="category",
label_field="labels",
expected_sample_rate=8000,
max_wave_value=32768.0,
)
valid_dataset = WaveClassifierExcelDataset(
vocab=vocabulary,
excel_file=args.valid_dataset,
category=None,
category_field="category",
label_field="labels",
expected_sample_rate=8000,
max_wave_value=32768.0,
)
train_data_loader = DataLoader(
dataset=train_dataset,
batch_size=args.batch_size,
shuffle=True,
# Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
collate_fn=collate_fn,
pin_memory=False,
# prefetch_factor=64,
)
valid_data_loader = DataLoader(
dataset=valid_dataset,
batch_size=args.batch_size,
shuffle=True,
# Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
collate_fn=collate_fn,
pin_memory=False,
# prefetch_factor=64,
)
# models
logger.info(f"prepare models. config_file: {args.config_file}")
config = CnnAudioClassifierConfig.from_pretrained(
pretrained_model_name_or_path=args.config_file,
# num_labels=vocabulary.get_vocab_size(namespace="labels")
)
if not config.cls_head_param["num_labels"] == vocabulary.get_vocab_size(namespace="labels"):
raise AssertionError("expected num labels: {} instead of {}.".format(
vocabulary.get_vocab_size(namespace="labels"),
config.cls_head_param["num_labels"],
))
model = WaveClassifierPretrainedModel(
config=config,
)
if args.pretrained_model is not None and os.path.exists(args.pretrained_model):
logger.info(f"load pretrained model state dict from: {args.pretrained_model}")
pretrained_model = Path(args.pretrained_model)
with zipfile.ZipFile(pretrained_model.as_posix(), "r") as f_zip:
out_root = Path(tempfile.gettempdir()) / "vm_sound_classification"
# print(out_root.as_posix())
if out_root.exists():
shutil.rmtree(out_root.as_posix())
out_root.mkdir(parents=True, exist_ok=True)
f_zip.extractall(path=out_root)
tgt_path = out_root / pretrained_model.stem
model_pt_file = tgt_path / "model.pt"
with open(model_pt_file, "rb") as f:
state_dict = torch.load(f, map_location="cpu")
model.load_state_dict(state_dict=state_dict)
model.to(device)
model.train()
# optimizer
logger.info("prepare optimizer, lr_scheduler, loss_fn, categorical_accuracy")
param_optimizer = model.parameters()
optimizer = torch.optim.Adam(
param_optimizer,
lr=args.learning_rate,
)
# lr_scheduler = torch.optim.lr_scheduler.StepLR(
# optimizer,
# step_size=2000
# )
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
milestones=[10000, 20000, 30000, 40000, 50000], gamma=0.5
)
focal_loss = FocalLoss(
num_classes=vocabulary.get_vocab_size(namespace="labels"),
reduction="mean",
)
categorical_accuracy = CategoricalAccuracy()
# training loop
logger.info("training")
training_loss = 10000000000
training_accuracy = 0.
evaluation_loss = 10000000000
evaluation_accuracy = 0.
model_list = list()
best_idx_epoch = None
best_accuracy = None
patience_count = 0
for idx_epoch in range(args.max_epochs):
categorical_accuracy.reset()
total_loss = 0.
total_examples = 0.
progress_bar = tqdm(
total=len(train_data_loader),
desc="Training; epoch: {}".format(idx_epoch),
)
for batch in train_data_loader:
input_ids, label_ids = batch
input_ids = input_ids.to(device)
label_ids: torch.LongTensor = label_ids.to(device).long()
logits = model.forward(input_ids)
loss = focal_loss.forward(logits, label_ids.view(-1))
categorical_accuracy(logits, label_ids)
total_loss += loss.item()
total_examples += input_ids.size(0)
optimizer.zero_grad()
loss.backward()
optimizer.step()
lr_scheduler.step()
training_loss = total_loss / total_examples
training_loss = round(training_loss, 4)
training_accuracy = categorical_accuracy.get_metric()["accuracy"]
training_accuracy = round(training_accuracy, 4)
progress_bar.update(1)
progress_bar.set_postfix({
"training_loss": training_loss,
"training_accuracy": training_accuracy,
})
categorical_accuracy.reset()
total_loss = 0.
total_examples = 0.
progress_bar = tqdm(
total=len(valid_data_loader),
desc="Evaluation; epoch: {}".format(idx_epoch),
)
for batch in valid_data_loader:
input_ids, label_ids = batch
input_ids = input_ids.to(device)
label_ids: torch.LongTensor = label_ids.to(device).long()
with torch.no_grad():
logits = model.forward(input_ids)
loss = focal_loss.forward(logits, label_ids.view(-1))
categorical_accuracy(logits, label_ids)
total_loss += loss.item()
total_examples += input_ids.size(0)
evaluation_loss = total_loss / total_examples
evaluation_loss = round(evaluation_loss, 4)
evaluation_accuracy = categorical_accuracy.get_metric()["accuracy"]
evaluation_accuracy = round(evaluation_accuracy, 4)
progress_bar.update(1)
progress_bar.set_postfix({
"evaluation_loss": evaluation_loss,
"evaluation_accuracy": evaluation_accuracy,
})
# save path
epoch_dir = serialization_dir / "epoch-{}".format(idx_epoch)
epoch_dir.mkdir(parents=True, exist_ok=False)
# save models
model.save_pretrained(epoch_dir.as_posix())
model_list.append(epoch_dir)
if len(model_list) >= args.num_serialized_models_to_keep:
model_to_delete: Path = model_list.pop(0)
shutil.rmtree(model_to_delete.as_posix())
# save metric
if best_accuracy is None:
best_idx_epoch = idx_epoch
best_accuracy = evaluation_accuracy
elif evaluation_accuracy > best_accuracy:
best_idx_epoch = idx_epoch
best_accuracy = evaluation_accuracy
else:
pass
metrics = {
"idx_epoch": idx_epoch,
"best_idx_epoch": best_idx_epoch,
"best_accuracy": best_accuracy,
"training_loss": training_loss,
"training_accuracy": training_accuracy,
"evaluation_loss": evaluation_loss,
"evaluation_accuracy": evaluation_accuracy,
"learning_rate": optimizer.param_groups[0]['lr'],
}
metrics_filename = epoch_dir / "metrics_epoch.json"
with open(metrics_filename, "w", encoding="utf-8") as f:
json.dump(metrics, f, indent=4, ensure_ascii=False)
# save best
best_dir = serialization_dir / "best"
if best_idx_epoch == idx_epoch:
if best_dir.exists():
shutil.rmtree(best_dir)
shutil.copytree(epoch_dir, best_dir)
# early stop
early_stop_flag = False
if best_idx_epoch == idx_epoch:
patience_count = 0
else:
patience_count += 1
if patience_count >= args.patience:
early_stop_flag = True
# early stop
if early_stop_flag:
break
return
if __name__ == "__main__":
main()