File size: 12,456 Bytes
bfa885e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
from collections import defaultdict
import json
import logging
from logging.handlers import TimedRotatingFileHandler
import os
import platform
from pathlib import Path
import random
import sys
import shutil
import tempfile
from typing import List
import zipfile

pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, "../../"))

import numpy as np
import torch
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm

from toolbox.torch.modules.loss import FocalLoss, HingeLoss, HingeLinear
from toolbox.torch.training.metrics.categorical_accuracy import CategoricalAccuracy
from toolbox.torch.utils.data.vocabulary import Vocabulary
from toolbox.torch.utils.data.dataset.wave_classifier_excel_dataset import WaveClassifierExcelDataset
from toolbox.torchaudio.models.cnn_audio_classifier.modeling_cnn_audio_classifier import WaveClassifierPretrainedModel
from toolbox.torchaudio.models.cnn_audio_classifier.configuration_cnn_audio_classifier import CnnAudioClassifierConfig


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--vocabulary_dir", default="vocabulary", type=str)

    parser.add_argument("--train_dataset", default="train.xlsx", type=str)
    parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)

    parser.add_argument("--max_epochs", default=100, type=int)

    parser.add_argument("--batch_size", default=64, type=int)
    parser.add_argument("--learning_rate", default=1e-3, type=float)
    parser.add_argument("--num_serialized_models_to_keep", default=10, type=int)
    parser.add_argument("--patience", default=5, type=int)
    parser.add_argument("--serialization_dir", default="serialization_dir", type=str)
    parser.add_argument("--seed", default=0, type=int)

    parser.add_argument("--config_file", default="conv2d_classifier.yaml", type=str)
    parser.add_argument(
        "--pretrained_model",
        # default=(project_path / "trained_models/voicemail-en-sg-2-ch4.zip").as_posix(),
        default="null",
        type=str
    )

    args = parser.parse_args()
    return args


def logging_config(file_dir: str):
    fmt = "%(asctime)s - %(name)s - %(levelname)s  %(filename)s:%(lineno)d >  %(message)s"

    logging.basicConfig(format=fmt,
                        datefmt="%m/%d/%Y %H:%M:%S",
                        level=logging.DEBUG)
    file_handler = TimedRotatingFileHandler(
        filename=os.path.join(file_dir, "main.log"),
        encoding="utf-8",
        when="D",
        interval=1,
        backupCount=7
    )
    file_handler.setLevel(logging.INFO)
    file_handler.setFormatter(logging.Formatter(fmt))
    logger = logging.getLogger(__name__)
    logger.addHandler(file_handler)

    return logger


class CollateFunction(object):
    def __init__(self):
        pass

    def __call__(self, batch: List[dict]):
        array_list = list()
        label_list = list()
        for sample in batch:
            array = sample["waveform"]
            label = sample["label"]

            l = len(array)
            if l < 16000:
                delta = int(16000 - l)
                array = np.concatenate([array, np.zeros(shape=(delta,), dtype=np.float32)], axis=-1)
            if l > 16000:
                array = array[:16000]

            array_list.append(array)
            label_list.append(label)

        array_list = torch.stack(array_list)
        label_list = torch.stack(label_list)
        return array_list, label_list


collate_fn = CollateFunction()


def main():
    args = get_args()

    serialization_dir = Path(args.serialization_dir)
    serialization_dir.mkdir(parents=True, exist_ok=True)

    logger = logging_config(serialization_dir)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    logger.info("set seed: {}".format(args.seed))

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    n_gpu = torch.cuda.device_count()
    logger.info("GPU available count: {}; device: {}".format(n_gpu, device))

    vocabulary = Vocabulary.from_files(args.vocabulary_dir)

    # datasets
    logger.info("prepare datasets")
    train_dataset = WaveClassifierExcelDataset(
        vocab=vocabulary,
        excel_file=args.train_dataset,
        category=None,
        category_field="category",
        label_field="labels",
        expected_sample_rate=8000,
        max_wave_value=32768.0,
    )
    valid_dataset = WaveClassifierExcelDataset(
        vocab=vocabulary,
        excel_file=args.valid_dataset,
        category=None,
        category_field="category",
        label_field="labels",
        expected_sample_rate=8000,
        max_wave_value=32768.0,
    )
    train_data_loader = DataLoader(
        dataset=train_dataset,
        batch_size=args.batch_size,
        shuffle=True,
        # Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
        num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
        collate_fn=collate_fn,
        pin_memory=False,
        # prefetch_factor=64,
    )
    valid_data_loader = DataLoader(
        dataset=valid_dataset,
        batch_size=args.batch_size,
        shuffle=True,
        # Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
        num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
        collate_fn=collate_fn,
        pin_memory=False,
        # prefetch_factor=64,
    )

    # models
    logger.info(f"prepare models. config_file: {args.config_file}")
    config = CnnAudioClassifierConfig.from_pretrained(
        pretrained_model_name_or_path=args.config_file,
        # num_labels=vocabulary.get_vocab_size(namespace="labels")
    )
    if not config.cls_head_param["num_labels"] == vocabulary.get_vocab_size(namespace="labels"):
        raise AssertionError("expected num labels: {} instead of {}.".format(
            vocabulary.get_vocab_size(namespace="labels"),
            config.cls_head_param["num_labels"],
        ))
    model = WaveClassifierPretrainedModel(
        config=config,
    )

    if args.pretrained_model is not None and os.path.exists(args.pretrained_model):
        logger.info(f"load pretrained model state dict from: {args.pretrained_model}")
        pretrained_model = Path(args.pretrained_model)
        with zipfile.ZipFile(pretrained_model.as_posix(), "r") as f_zip:
            out_root = Path(tempfile.gettempdir()) / "vm_sound_classification"
            # print(out_root.as_posix())
            if out_root.exists():
                shutil.rmtree(out_root.as_posix())
            out_root.mkdir(parents=True, exist_ok=True)
            f_zip.extractall(path=out_root)

        tgt_path = out_root / pretrained_model.stem
        model_pt_file = tgt_path / "model.pt"
        with open(model_pt_file, "rb") as f:
            state_dict = torch.load(f, map_location="cpu")
        model.load_state_dict(state_dict=state_dict)

    model.to(device)
    model.train()

    # optimizer
    logger.info("prepare optimizer, lr_scheduler, loss_fn, categorical_accuracy")
    param_optimizer = model.parameters()
    optimizer = torch.optim.Adam(
        param_optimizer,
        lr=args.learning_rate,
    )
    # lr_scheduler = torch.optim.lr_scheduler.StepLR(
    #     optimizer,
    #     step_size=2000
    # )
    lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
        optimizer,
        milestones=[10000, 20000, 30000, 40000, 50000], gamma=0.5
    )
    focal_loss = FocalLoss(
        num_classes=vocabulary.get_vocab_size(namespace="labels"),
        reduction="mean",
    )
    categorical_accuracy = CategoricalAccuracy()

    # training loop
    logger.info("training")

    training_loss = 10000000000
    training_accuracy = 0.
    evaluation_loss = 10000000000
    evaluation_accuracy = 0.

    model_list = list()
    best_idx_epoch = None
    best_accuracy = None
    patience_count = 0

    for idx_epoch in range(args.max_epochs):
        categorical_accuracy.reset()
        total_loss = 0.
        total_examples = 0.
        progress_bar = tqdm(
            total=len(train_data_loader),
            desc="Training; epoch: {}".format(idx_epoch),
        )
        for batch in train_data_loader:
            input_ids, label_ids = batch
            input_ids = input_ids.to(device)
            label_ids: torch.LongTensor = label_ids.to(device).long()

            logits = model.forward(input_ids)
            loss = focal_loss.forward(logits, label_ids.view(-1))
            categorical_accuracy(logits, label_ids)

            total_loss += loss.item()
            total_examples += input_ids.size(0)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            lr_scheduler.step()

            training_loss = total_loss / total_examples
            training_loss = round(training_loss, 4)
            training_accuracy = categorical_accuracy.get_metric()["accuracy"]
            training_accuracy = round(training_accuracy, 4)

            progress_bar.update(1)
            progress_bar.set_postfix({
                "training_loss": training_loss,
                "training_accuracy": training_accuracy,
            })

        categorical_accuracy.reset()
        total_loss = 0.
        total_examples = 0.
        progress_bar = tqdm(
            total=len(valid_data_loader),
            desc="Evaluation; epoch: {}".format(idx_epoch),
        )
        for batch in valid_data_loader:
            input_ids, label_ids = batch
            input_ids = input_ids.to(device)
            label_ids: torch.LongTensor = label_ids.to(device).long()

            with torch.no_grad():
                logits = model.forward(input_ids)
                loss = focal_loss.forward(logits, label_ids.view(-1))
                categorical_accuracy(logits, label_ids)

            total_loss += loss.item()
            total_examples += input_ids.size(0)

            evaluation_loss = total_loss / total_examples
            evaluation_loss = round(evaluation_loss, 4)
            evaluation_accuracy = categorical_accuracy.get_metric()["accuracy"]
            evaluation_accuracy = round(evaluation_accuracy, 4)

            progress_bar.update(1)
            progress_bar.set_postfix({
                "evaluation_loss": evaluation_loss,
                "evaluation_accuracy": evaluation_accuracy,
            })

        # save path
        epoch_dir = serialization_dir / "epoch-{}".format(idx_epoch)
        epoch_dir.mkdir(parents=True, exist_ok=False)

        # save models
        model.save_pretrained(epoch_dir.as_posix())

        model_list.append(epoch_dir)
        if len(model_list) >= args.num_serialized_models_to_keep:
            model_to_delete: Path = model_list.pop(0)
            shutil.rmtree(model_to_delete.as_posix())

        # save metric
        if best_accuracy is None:
            best_idx_epoch = idx_epoch
            best_accuracy = evaluation_accuracy
        elif evaluation_accuracy > best_accuracy:
            best_idx_epoch = idx_epoch
            best_accuracy = evaluation_accuracy
        else:
            pass

        metrics = {
            "idx_epoch": idx_epoch,
            "best_idx_epoch": best_idx_epoch,
            "best_accuracy": best_accuracy,
            "training_loss": training_loss,
            "training_accuracy": training_accuracy,
            "evaluation_loss": evaluation_loss,
            "evaluation_accuracy": evaluation_accuracy,
            "learning_rate": optimizer.param_groups[0]['lr'],
        }
        metrics_filename = epoch_dir / "metrics_epoch.json"
        with open(metrics_filename, "w", encoding="utf-8") as f:
            json.dump(metrics, f, indent=4, ensure_ascii=False)

        # save best
        best_dir = serialization_dir / "best"
        if best_idx_epoch == idx_epoch:
            if best_dir.exists():
                shutil.rmtree(best_dir)
            shutil.copytree(epoch_dir, best_dir)

        # early stop
        early_stop_flag = False
        if best_idx_epoch == idx_epoch:
            patience_count = 0
        else:
            patience_count += 1
        if patience_count >= args.patience:
            early_stop_flag = True

        # early stop
        if early_stop_flag:
            break
    return


if __name__ == "__main__":
    main()