Spaces:
Running
Running
File size: 12,456 Bytes
bfa885e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
from collections import defaultdict
import json
import logging
from logging.handlers import TimedRotatingFileHandler
import os
import platform
from pathlib import Path
import random
import sys
import shutil
import tempfile
from typing import List
import zipfile
pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, "../../"))
import numpy as np
import torch
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
from toolbox.torch.modules.loss import FocalLoss, HingeLoss, HingeLinear
from toolbox.torch.training.metrics.categorical_accuracy import CategoricalAccuracy
from toolbox.torch.utils.data.vocabulary import Vocabulary
from toolbox.torch.utils.data.dataset.wave_classifier_excel_dataset import WaveClassifierExcelDataset
from toolbox.torchaudio.models.cnn_audio_classifier.modeling_cnn_audio_classifier import WaveClassifierPretrainedModel
from toolbox.torchaudio.models.cnn_audio_classifier.configuration_cnn_audio_classifier import CnnAudioClassifierConfig
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--vocabulary_dir", default="vocabulary", type=str)
parser.add_argument("--train_dataset", default="train.xlsx", type=str)
parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)
parser.add_argument("--max_epochs", default=100, type=int)
parser.add_argument("--batch_size", default=64, type=int)
parser.add_argument("--learning_rate", default=1e-3, type=float)
parser.add_argument("--num_serialized_models_to_keep", default=10, type=int)
parser.add_argument("--patience", default=5, type=int)
parser.add_argument("--serialization_dir", default="serialization_dir", type=str)
parser.add_argument("--seed", default=0, type=int)
parser.add_argument("--config_file", default="conv2d_classifier.yaml", type=str)
parser.add_argument(
"--pretrained_model",
# default=(project_path / "trained_models/voicemail-en-sg-2-ch4.zip").as_posix(),
default="null",
type=str
)
args = parser.parse_args()
return args
def logging_config(file_dir: str):
fmt = "%(asctime)s - %(name)s - %(levelname)s %(filename)s:%(lineno)d > %(message)s"
logging.basicConfig(format=fmt,
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.DEBUG)
file_handler = TimedRotatingFileHandler(
filename=os.path.join(file_dir, "main.log"),
encoding="utf-8",
when="D",
interval=1,
backupCount=7
)
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(logging.Formatter(fmt))
logger = logging.getLogger(__name__)
logger.addHandler(file_handler)
return logger
class CollateFunction(object):
def __init__(self):
pass
def __call__(self, batch: List[dict]):
array_list = list()
label_list = list()
for sample in batch:
array = sample["waveform"]
label = sample["label"]
l = len(array)
if l < 16000:
delta = int(16000 - l)
array = np.concatenate([array, np.zeros(shape=(delta,), dtype=np.float32)], axis=-1)
if l > 16000:
array = array[:16000]
array_list.append(array)
label_list.append(label)
array_list = torch.stack(array_list)
label_list = torch.stack(label_list)
return array_list, label_list
collate_fn = CollateFunction()
def main():
args = get_args()
serialization_dir = Path(args.serialization_dir)
serialization_dir.mkdir(parents=True, exist_ok=True)
logger = logging_config(serialization_dir)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
logger.info("set seed: {}".format(args.seed))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
logger.info("GPU available count: {}; device: {}".format(n_gpu, device))
vocabulary = Vocabulary.from_files(args.vocabulary_dir)
# datasets
logger.info("prepare datasets")
train_dataset = WaveClassifierExcelDataset(
vocab=vocabulary,
excel_file=args.train_dataset,
category=None,
category_field="category",
label_field="labels",
expected_sample_rate=8000,
max_wave_value=32768.0,
)
valid_dataset = WaveClassifierExcelDataset(
vocab=vocabulary,
excel_file=args.valid_dataset,
category=None,
category_field="category",
label_field="labels",
expected_sample_rate=8000,
max_wave_value=32768.0,
)
train_data_loader = DataLoader(
dataset=train_dataset,
batch_size=args.batch_size,
shuffle=True,
# Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
collate_fn=collate_fn,
pin_memory=False,
# prefetch_factor=64,
)
valid_data_loader = DataLoader(
dataset=valid_dataset,
batch_size=args.batch_size,
shuffle=True,
# Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
collate_fn=collate_fn,
pin_memory=False,
# prefetch_factor=64,
)
# models
logger.info(f"prepare models. config_file: {args.config_file}")
config = CnnAudioClassifierConfig.from_pretrained(
pretrained_model_name_or_path=args.config_file,
# num_labels=vocabulary.get_vocab_size(namespace="labels")
)
if not config.cls_head_param["num_labels"] == vocabulary.get_vocab_size(namespace="labels"):
raise AssertionError("expected num labels: {} instead of {}.".format(
vocabulary.get_vocab_size(namespace="labels"),
config.cls_head_param["num_labels"],
))
model = WaveClassifierPretrainedModel(
config=config,
)
if args.pretrained_model is not None and os.path.exists(args.pretrained_model):
logger.info(f"load pretrained model state dict from: {args.pretrained_model}")
pretrained_model = Path(args.pretrained_model)
with zipfile.ZipFile(pretrained_model.as_posix(), "r") as f_zip:
out_root = Path(tempfile.gettempdir()) / "vm_sound_classification"
# print(out_root.as_posix())
if out_root.exists():
shutil.rmtree(out_root.as_posix())
out_root.mkdir(parents=True, exist_ok=True)
f_zip.extractall(path=out_root)
tgt_path = out_root / pretrained_model.stem
model_pt_file = tgt_path / "model.pt"
with open(model_pt_file, "rb") as f:
state_dict = torch.load(f, map_location="cpu")
model.load_state_dict(state_dict=state_dict)
model.to(device)
model.train()
# optimizer
logger.info("prepare optimizer, lr_scheduler, loss_fn, categorical_accuracy")
param_optimizer = model.parameters()
optimizer = torch.optim.Adam(
param_optimizer,
lr=args.learning_rate,
)
# lr_scheduler = torch.optim.lr_scheduler.StepLR(
# optimizer,
# step_size=2000
# )
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
milestones=[10000, 20000, 30000, 40000, 50000], gamma=0.5
)
focal_loss = FocalLoss(
num_classes=vocabulary.get_vocab_size(namespace="labels"),
reduction="mean",
)
categorical_accuracy = CategoricalAccuracy()
# training loop
logger.info("training")
training_loss = 10000000000
training_accuracy = 0.
evaluation_loss = 10000000000
evaluation_accuracy = 0.
model_list = list()
best_idx_epoch = None
best_accuracy = None
patience_count = 0
for idx_epoch in range(args.max_epochs):
categorical_accuracy.reset()
total_loss = 0.
total_examples = 0.
progress_bar = tqdm(
total=len(train_data_loader),
desc="Training; epoch: {}".format(idx_epoch),
)
for batch in train_data_loader:
input_ids, label_ids = batch
input_ids = input_ids.to(device)
label_ids: torch.LongTensor = label_ids.to(device).long()
logits = model.forward(input_ids)
loss = focal_loss.forward(logits, label_ids.view(-1))
categorical_accuracy(logits, label_ids)
total_loss += loss.item()
total_examples += input_ids.size(0)
optimizer.zero_grad()
loss.backward()
optimizer.step()
lr_scheduler.step()
training_loss = total_loss / total_examples
training_loss = round(training_loss, 4)
training_accuracy = categorical_accuracy.get_metric()["accuracy"]
training_accuracy = round(training_accuracy, 4)
progress_bar.update(1)
progress_bar.set_postfix({
"training_loss": training_loss,
"training_accuracy": training_accuracy,
})
categorical_accuracy.reset()
total_loss = 0.
total_examples = 0.
progress_bar = tqdm(
total=len(valid_data_loader),
desc="Evaluation; epoch: {}".format(idx_epoch),
)
for batch in valid_data_loader:
input_ids, label_ids = batch
input_ids = input_ids.to(device)
label_ids: torch.LongTensor = label_ids.to(device).long()
with torch.no_grad():
logits = model.forward(input_ids)
loss = focal_loss.forward(logits, label_ids.view(-1))
categorical_accuracy(logits, label_ids)
total_loss += loss.item()
total_examples += input_ids.size(0)
evaluation_loss = total_loss / total_examples
evaluation_loss = round(evaluation_loss, 4)
evaluation_accuracy = categorical_accuracy.get_metric()["accuracy"]
evaluation_accuracy = round(evaluation_accuracy, 4)
progress_bar.update(1)
progress_bar.set_postfix({
"evaluation_loss": evaluation_loss,
"evaluation_accuracy": evaluation_accuracy,
})
# save path
epoch_dir = serialization_dir / "epoch-{}".format(idx_epoch)
epoch_dir.mkdir(parents=True, exist_ok=False)
# save models
model.save_pretrained(epoch_dir.as_posix())
model_list.append(epoch_dir)
if len(model_list) >= args.num_serialized_models_to_keep:
model_to_delete: Path = model_list.pop(0)
shutil.rmtree(model_to_delete.as_posix())
# save metric
if best_accuracy is None:
best_idx_epoch = idx_epoch
best_accuracy = evaluation_accuracy
elif evaluation_accuracy > best_accuracy:
best_idx_epoch = idx_epoch
best_accuracy = evaluation_accuracy
else:
pass
metrics = {
"idx_epoch": idx_epoch,
"best_idx_epoch": best_idx_epoch,
"best_accuracy": best_accuracy,
"training_loss": training_loss,
"training_accuracy": training_accuracy,
"evaluation_loss": evaluation_loss,
"evaluation_accuracy": evaluation_accuracy,
"learning_rate": optimizer.param_groups[0]['lr'],
}
metrics_filename = epoch_dir / "metrics_epoch.json"
with open(metrics_filename, "w", encoding="utf-8") as f:
json.dump(metrics, f, indent=4, ensure_ascii=False)
# save best
best_dir = serialization_dir / "best"
if best_idx_epoch == idx_epoch:
if best_dir.exists():
shutil.rmtree(best_dir)
shutil.copytree(epoch_dir, best_dir)
# early stop
early_stop_flag = False
if best_idx_epoch == idx_epoch:
patience_count = 0
else:
patience_count += 1
if patience_count >= args.patience:
early_stop_flag = True
# early stop
if early_stop_flag:
break
return
if __name__ == "__main__":
main()
|