frankaging
o1 impl
f860e61
raw
history blame
9.51 kB
import os, json
import torch
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from huggingface_hub import login, hf_hub_download
import pyvene as pv
from threading import Thread
from typing import Iterator
HF_TOKEN = os.environ.get("HF_TOKEN")
login(token=HF_TOKEN)
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DESCRIPTION = """\
# Model Steering with Supervised Dictionary Learning (SDL)
### What's Model Steering with SDL?
This is a demo of model steering with AxBench-ReFT-r1-16K, ...
"""
LICENSE = """
<p/>
---
Please refer to the specific licensing and use policy of the underlying model.
"""
def load_jsonl(jsonl_path):
jsonl_data = []
with open(jsonl_path, 'r') as f:
for line in f:
data = json.loads(line)
jsonl_data.append(data)
return jsonl_data
class Steer(pv.SourcelessIntervention):
"""Steer model via activation addition"""
def __init__(self, **kwargs):
super().__init__(**kwargs, keep_last_dim=True)
self.proj = torch.nn.Linear(self.embed_dim, kwargs["latent_dim"], bias=False)
def forward(self, base, source=None, subspaces=None):
# subspaces is a list of dicts: each has {"idx": int, "mag": float}
steer_vec = base
if subspaces is not None:
for sp in subspaces:
idx = sp["idx"]
mag = sp["mag"]
# each idx is a row in self.proj.weight
steering_vec = mag * self.proj.weight[idx].unsqueeze(dim=0)
steer_vec = steer_vec + steering_vec
return steer_vec
# ---------------------------------------------------
# Load Model & Dictionary if GPU is available
# ---------------------------------------------------
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo won't perform well on CPU.</p>"
if torch.cuda.is_available():
model_id = "google/gemma-2-2b-it"
model = AutoModelForCausalLM.from_pretrained(
model_id, device_map="cuda", torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
path_to_params = hf_hub_download(repo_id="pyvene/gemma-reft-2b-it-res", filename="l20/weight.pt")
path_to_md = hf_hub_download(repo_id="pyvene/gemma-reft-2b-it-res", filename="l20/metadata.jsonl")
params = torch.load(path_to_params).cuda()
md = load_jsonl(path_to_md)
concept_list = [item["concept"] for item in md]
concept_id_map = {item["concept"]: item["concept_id"] for item in md}
steer = Steer(embed_dim=params.shape[0], latent_dim=params.shape[1])
steer.proj.weight.data = params.float()
pv_model = pv.IntervenableModel(
{
"component": f"model.layers[20].output",
"intervention": steer,
},
model=model,
)
terminators = [tokenizer.eos_token_id]
# ---------------------------------------------------------------------
# The main generation function, limiting to last 3 conversation turns
# and then using apply_chat_template
# ---------------------------------------------------------------------
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int,
subspaces_list: list[dict],
) -> Iterator[str]:
# Restrict to the last 3 turns only
start_idx = max(0, len(chat_history) - 3)
recent_history = chat_history[start_idx:]
# Build a list of messages
# each tuple is (user_message, assistant_message)
messages = []
for user_msg, assistant_msg in recent_history:
messages.append({"role": "user", "content": user_msg})
messages.append({"role": "assistant", "content": assistant_msg})
# Now append the new user message
messages.append({"role": "user", "content": message})
# Convert messages into model input tokens with a generation prompt
prompt = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True # appends a final "Assistant:" for the model to continue
)
# Retrieve input_ids and mask
input_ids = torch.tensor([prompt["input_ids"]]).cuda()
attention_mask = torch.tensor([prompt["attention_mask"]]).cuda()
# Possibly trim if over max length
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
attention_mask = attention_mask[:, -MAX_INPUT_TOKEN_LENGTH:]
yield "\n[Warning: Truncated conversation exceeds max allowed input tokens]\n"
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = {
"base": {"input_ids": input_ids, "attention_mask": attention_mask},
"unit_locations": None,
"max_new_tokens": max_new_tokens,
"intervene_on_prompt": True,
"subspaces": subspaces_list,
"streamer": streamer,
"eos_token_id": terminators,
"early_stopping": True,
"do_sample": True
}
t = Thread(target=pv_model.generate, kwargs=generate_kwargs)
t.start()
partial_text = []
for token_str in streamer:
partial_text.append(token_str)
yield "".join(partial_text)
# --------------
# UI Callbacks
# --------------
def filter_concepts(search_text: str):
if not search_text.strip():
return concept_list[:500]
filtered = [c for c in concept_list if search_text.lower() in c.lower()]
return filtered[:500]
def add_concept_to_list(selected_concept, magnitude, current_list):
"""When 'Add Concept' is clicked, add the chosen concept and magnitude to subspaces."""
if not selected_concept:
return current_list, current_list, gr.update(choices=[str(x["idx"]) for x in current_list])
concept_idx = concept_id_map[selected_concept]
new_entry = {"idx": concept_idx, "mag": magnitude}
updated_list = current_list + [new_entry]
remove_choices = [str(x["idx"]) for x in updated_list]
table_data = [[x['idx'], x['mag']] for x in updated_list]
return updated_list, table_data, gr.update(choices=remove_choices)
def remove_concept_from_list(rem_concept_idx_str, current_list):
"""Remove the chosen concept from the list. Index is a string from remove_dropdown."""
if not rem_concept_idx_str:
return current_list, current_list, gr.update()
rem_idx = int(rem_concept_idx_str)
updated_list = [x for x in current_list if x["idx"] != rem_idx]
remove_choices = [str(x["idx"]) for x in updated_list]
table_data = [[x['idx'], x['mag']] for x in updated_list]
return updated_list, table_data, gr.update(choices=remove_choices)
def update_dropdown_choices(search_text):
filtered = filter_concepts(search_text)
return gr.update(choices=filtered)
# -------------------------
# Build the Gradio Blocks
# -------------------------
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
selected_subspaces = gr.State([])
with gr.Row():
with gr.Column():
# Searching / selecting a concept
search_box = gr.Textbox(
label="Search concepts",
placeholder="Type text to filter concepts (e.g. 'sports')"
)
concept_dropdown = gr.Dropdown(
label="Filtered Concepts",
choices=[],
multiselect=False
)
concept_magnitude = gr.Slider(
label="Magnitude",
minimum=-300.0,
maximum=300.0,
step=1.0,
value=150.0
)
add_button = gr.Button("Add Concept")
# Removal
remove_dropdown = gr.Dropdown(
label="Remove from active list",
choices=[],
multiselect=False
)
remove_button = gr.Button("Remove Selected")
with gr.Column():
# Display currently active subspaces
active_subspaces_table = gr.Dataframe(
headers=["idx", "magnitude"],
datatype=["number", "number"],
interactive=False,
label="Active Concept Subspaces"
)
# The Chat Interface
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
selected_subspaces
],
title="Model Steering with ReFT-r1 (16K concepts)",
)
gr.Markdown(LICENSE)
# Wire up events
search_box.change(
fn=update_dropdown_choices,
inputs=[search_box],
outputs=[concept_dropdown]
)
add_button.click(
fn=add_concept_to_list,
inputs=[concept_dropdown, concept_magnitude, selected_subspaces],
outputs=[selected_subspaces, active_subspaces_table, remove_dropdown],
)
remove_button.click(
fn=remove_concept_from_list,
inputs=[remove_dropdown, selected_subspaces],
outputs=[selected_subspaces, active_subspaces_table, remove_dropdown],
)
demo.queue(max_size=20).launch()