Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,512 Bytes
330e95b f860e61 0e90065 f860e61 330e95b f860e61 0e90065 f860e61 0e90065 330e95b 0e90065 330e95b f860e61 0e90065 f860e61 0e90065 330e95b f860e61 330e95b f860e61 330e95b f860e61 330e95b f860e61 0e90065 f860e61 0e90065 330e95b 0e90065 330e95b f860e61 330e95b f860e61 330e95b f860e61 330e95b f860e61 0e90065 f860e61 fcb8864 0e90065 f860e61 0e90065 f860e61 0e90065 f860e61 0e90065 f860e61 0e90065 330e95b 0e90065 f860e61 0e90065 330e95b 0e90065 f860e61 0e90065 f860e61 0e90065 f860e61 0e90065 f860e61 0e90065 f860e61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import os, json
import torch
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from huggingface_hub import login, hf_hub_download
import pyvene as pv
from threading import Thread
from typing import Iterator
HF_TOKEN = os.environ.get("HF_TOKEN")
login(token=HF_TOKEN)
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DESCRIPTION = """\
# Model Steering with Supervised Dictionary Learning (SDL)
### What's Model Steering with SDL?
This is a demo of model steering with AxBench-ReFT-r1-16K, ...
"""
LICENSE = """
<p/>
---
Please refer to the specific licensing and use policy of the underlying model.
"""
def load_jsonl(jsonl_path):
jsonl_data = []
with open(jsonl_path, 'r') as f:
for line in f:
data = json.loads(line)
jsonl_data.append(data)
return jsonl_data
class Steer(pv.SourcelessIntervention):
"""Steer model via activation addition"""
def __init__(self, **kwargs):
super().__init__(**kwargs, keep_last_dim=True)
self.proj = torch.nn.Linear(self.embed_dim, kwargs["latent_dim"], bias=False)
def forward(self, base, source=None, subspaces=None):
# subspaces is a list of dicts: each has {"idx": int, "mag": float}
steer_vec = base
if subspaces is not None:
for sp in subspaces:
idx = sp["idx"]
mag = sp["mag"]
# each idx is a row in self.proj.weight
steering_vec = mag * self.proj.weight[idx].unsqueeze(dim=0)
steer_vec = steer_vec + steering_vec
return steer_vec
# ---------------------------------------------------
# Load Model & Dictionary if GPU is available
# ---------------------------------------------------
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo won't perform well on CPU.</p>"
if torch.cuda.is_available():
model_id = "google/gemma-2-2b-it"
model = AutoModelForCausalLM.from_pretrained(
model_id, device_map="cuda", torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
path_to_params = hf_hub_download(repo_id="pyvene/gemma-reft-2b-it-res", filename="l20/weight.pt")
path_to_md = hf_hub_download(repo_id="pyvene/gemma-reft-2b-it-res", filename="l20/metadata.jsonl")
params = torch.load(path_to_params).cuda()
md = load_jsonl(path_to_md)
concept_list = [item["concept"] for item in md]
concept_id_map = {item["concept"]: item["concept_id"] for item in md}
steer = Steer(embed_dim=params.shape[0], latent_dim=params.shape[1])
steer.proj.weight.data = params.float()
pv_model = pv.IntervenableModel(
{
"component": f"model.layers[20].output",
"intervention": steer,
},
model=model,
)
terminators = [tokenizer.eos_token_id]
# ---------------------------------------------------------------------
# The main generation function, limiting to last 3 conversation turns
# and then using apply_chat_template
# ---------------------------------------------------------------------
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int,
subspaces_list: list[dict],
) -> Iterator[str]:
# Restrict to the last 3 turns only
start_idx = max(0, len(chat_history) - 3)
recent_history = chat_history[start_idx:]
# Build a list of messages
# each tuple is (user_message, assistant_message)
messages = []
for user_msg, assistant_msg in recent_history:
messages.append({"role": "user", "content": user_msg})
messages.append({"role": "assistant", "content": assistant_msg})
# Now append the new user message
messages.append({"role": "user", "content": message})
# Convert messages into model input tokens with a generation prompt
prompt = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True # appends a final "Assistant:" for the model to continue
)
# Retrieve input_ids and mask
input_ids = torch.tensor([prompt["input_ids"]]).cuda()
attention_mask = torch.tensor([prompt["attention_mask"]]).cuda()
# Possibly trim if over max length
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
attention_mask = attention_mask[:, -MAX_INPUT_TOKEN_LENGTH:]
yield "\n[Warning: Truncated conversation exceeds max allowed input tokens]\n"
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = {
"base": {"input_ids": input_ids, "attention_mask": attention_mask},
"unit_locations": None,
"max_new_tokens": max_new_tokens,
"intervene_on_prompt": True,
"subspaces": subspaces_list,
"streamer": streamer,
"eos_token_id": terminators,
"early_stopping": True,
"do_sample": True
}
t = Thread(target=pv_model.generate, kwargs=generate_kwargs)
t.start()
partial_text = []
for token_str in streamer:
partial_text.append(token_str)
yield "".join(partial_text)
# --------------
# UI Callbacks
# --------------
def filter_concepts(search_text: str):
if not search_text.strip():
return concept_list[:500]
filtered = [c for c in concept_list if search_text.lower() in c.lower()]
return filtered[:500]
def add_concept_to_list(selected_concept, magnitude, current_list):
"""When 'Add Concept' is clicked, add the chosen concept and magnitude to subspaces."""
if not selected_concept:
return current_list, current_list, gr.update(choices=[str(x["idx"]) for x in current_list])
concept_idx = concept_id_map[selected_concept]
new_entry = {"idx": concept_idx, "mag": magnitude}
updated_list = current_list + [new_entry]
remove_choices = [str(x["idx"]) for x in updated_list]
table_data = [[x['idx'], x['mag']] for x in updated_list]
return updated_list, table_data, gr.update(choices=remove_choices)
def remove_concept_from_list(rem_concept_idx_str, current_list):
"""Remove the chosen concept from the list. Index is a string from remove_dropdown."""
if not rem_concept_idx_str:
return current_list, current_list, gr.update()
rem_idx = int(rem_concept_idx_str)
updated_list = [x for x in current_list if x["idx"] != rem_idx]
remove_choices = [str(x["idx"]) for x in updated_list]
table_data = [[x['idx'], x['mag']] for x in updated_list]
return updated_list, table_data, gr.update(choices=remove_choices)
def update_dropdown_choices(search_text):
filtered = filter_concepts(search_text)
return gr.update(choices=filtered)
# -------------------------
# Build the Gradio Blocks
# -------------------------
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
selected_subspaces = gr.State([])
with gr.Row():
with gr.Column():
# Searching / selecting a concept
search_box = gr.Textbox(
label="Search concepts",
placeholder="Type text to filter concepts (e.g. 'sports')"
)
concept_dropdown = gr.Dropdown(
label="Filtered Concepts",
choices=[],
multiselect=False
)
concept_magnitude = gr.Slider(
label="Magnitude",
minimum=-300.0,
maximum=300.0,
step=1.0,
value=150.0
)
add_button = gr.Button("Add Concept")
# Removal
remove_dropdown = gr.Dropdown(
label="Remove from active list",
choices=[],
multiselect=False
)
remove_button = gr.Button("Remove Selected")
with gr.Column():
# Display currently active subspaces
active_subspaces_table = gr.Dataframe(
headers=["idx", "magnitude"],
datatype=["number", "number"],
interactive=False,
label="Active Concept Subspaces"
)
# The Chat Interface
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
selected_subspaces
],
title="Model Steering with ReFT-r1 (16K concepts)",
)
gr.Markdown(LICENSE)
# Wire up events
search_box.change(
fn=update_dropdown_choices,
inputs=[search_box],
outputs=[concept_dropdown]
)
add_button.click(
fn=add_concept_to_list,
inputs=[concept_dropdown, concept_magnitude, selected_subspaces],
outputs=[selected_subspaces, active_subspaces_table, remove_dropdown],
)
remove_button.click(
fn=remove_concept_from_list,
inputs=[remove_dropdown, selected_subspaces],
outputs=[selected_subspaces, active_subspaces_table, remove_dropdown],
)
demo.queue(max_size=20).launch()
|