File size: 8,673 Bytes
7497e24
f860e61
0e90065
 
 
f860e61
884bfb5
330e95b
f860e61
 
0e90065
f860e61
 
0e90065
 
bddba98
e39562b
0e90065
330e95b
 
 
 
 
f860e61
330e95b
 
 
e3ab52c
330e95b
 
e3ab52c
bddba98
 
f860e61
1644e6b
 
bb5c56b
60cfe00
bb5c56b
 
 
60cfe00
e3ab52c
330e95b
e39562b
0e90065
e39562b
 
 
 
 
 
 
 
0e90065
 
 
 
 
330e95b
e39562b
 
 
 
 
f860e61
330e95b
7f3db95
 
 
 
 
 
 
330e95b
 
 
 
e3ab52c
 
 
0e90065
e39562b
0e90065
 
 
 
 
f860e61
884bfb5
0e90065
3cb38a4
de8f900
 
f860e61
 
e39562b
f860e61
7f543e6
 
f860e61
 
e39562b
 
f860e61
e39562b
0e90065
 
e39562b
f860e61
0e90065
1644e6b
0e90065
e39562b
330e95b
0e90065
 
bddba98
 
bb5c56b
 
bddba98
1644e6b
0e90065
 
 
 
330e95b
0e90065
 
f860e61
 
 
 
 
 
 
 
 
 
 
7497e24
bddba98
 
 
 
 
f860e61
bddba98
 
e39562b
 
7497e24
 
e39562b
7497e24
 
 
 
bddba98
7497e24
e39562b
bddba98
 
 
 
 
e39562b
bddba98
e39562b
bddba98
f860e61
1baa5c3
 
 
f860e61
 
 
 
0e90065
f860e61
e39562b
7497e24
e39562b
e3ab52c
7497e24
 
1baa5c3
e39562b
 
7497e24
 
 
f860e61
e39562b
 
7497e24
 
98bf5cc
e39562b
4a08f06
7497e24
e39562b
 
e3ab52c
f860e61
 
e39562b
f860e61
 
 
e39562b
f860e61
 
ea4a182
7497e24
 
1baa5c3
7497e24
f860e61
 
884bfb5
e39562b
 
 
 
 
 
 
 
 
f860e61
bddba98
 
 
 
 
 
 
 
 
f860e61
e39562b
 
884bfb5
f860e61
bddba98
 
 
f860e61
e39562b
 
884bfb5
e39562b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import os, json, random
import torch
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from huggingface_hub import login, hf_hub_download
import pyreft
import pyvene as pv
from threading import Thread
from typing import Iterator

HF_TOKEN = os.environ.get("HF_TOKEN")
login(token=HF_TOKEN)

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 128  # smaller default to save memory
MAX_INPUT_TOKEN_LENGTH = 4096

def load_jsonl(jsonl_path):
    jsonl_data = []
    with open(jsonl_path, 'r') as f:
        for line in f:
            data = json.loads(line)
            jsonl_data.append(data)
    return jsonl_data

class Steer(pv.SourcelessIntervention):
    """Steer model via activation addition"""
    def __init__(self, **kwargs):
        super().__init__(**kwargs, keep_last_dim=True)
        self.proj = torch.nn.Linear(
            self.embed_dim, kwargs["latent_dim"], bias=False
        )
    def forward(self, base, source=None, subspaces=None):
        if subspaces is None:
            return base
        steering_vec = []
        avg_mag = sum(subspaces["mag"]) / len(subspaces["mag"])
        for idx, mag in zip(subspaces["idx"], subspaces["mag"]):
            steering_vec.append(self.proj.weight[idx].unsqueeze(dim=0))
        steering_vec = torch.cat(steering_vec, dim=0).mean(dim=0)
        steering_vec = avg_mag * steering_vec
        return base + steering_vec

# Check GPU
if not torch.cuda.is_available():
    print("Warning: Running on CPU, may be slow.")

# Load model & dictionary
model_id = "google/gemma-2-2b-it"
pv_model = None
tokenizer = None
concept_list = []
concept_id_map = {}
if torch.cuda.is_available():
    model = AutoModelForCausalLM.from_pretrained(
        model_id, device_map="cuda", torch_dtype=torch.bfloat16
    )
    tokenizer = AutoTokenizer.from_pretrained(model_id)

    # Download dictionary
    weight_path = hf_hub_download(repo_id="pyvene/gemma-reft-2b-it-res", filename="l20/weight.pt")
    meta_path = hf_hub_download(repo_id="pyvene/gemma-reft-2b-it-res", filename="l20/metadata.jsonl")
    params = torch.load(weight_path).cuda()
    md = load_jsonl(meta_path)

    concept_list = [item["concept"] for item in md]
    concept_id_map = {}

    # the reason to reindex is because there is one concept that is missing.
    concept_reindex = 0
    for item in md:
        concept_id_map[item["concept"]] = concept_reindex
        concept_reindex += 1

    steer = Steer(embed_dim=params.shape[0], latent_dim=params.shape[1])
    steer.proj.weight.data = params.float()

    pv_model = pv.IntervenableModel({
        "component": f"model.layers[20].output",
        "intervention": steer}, model=model)

terminators = [tokenizer.eos_token_id] if tokenizer else []

@spaces.GPU
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    subspaces_list: list[dict],
    max_new_tokens: int=DEFAULT_MAX_NEW_TOKENS,
) -> Iterator[str]:

    # limit to last 4 turns
    start_idx = max(0, len(chat_history) - 4)
    recent_history = chat_history[start_idx:]

    # build list of messages
    messages = []
    for rh in recent_history:
        messages.append({"role": rh["role"], "content": rh["content"]})
    messages.append({"role": "user", "content": message})

    input_ids = torch.tensor([tokenizer.apply_chat_template(
        messages, tokenize=True, add_generation_prompt=True)]).cuda()

    # trim if needed
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        yield "[Truncated prior text]\n"

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    print(subspaces_list)
    generate_kwargs = {
        "base": {"input_ids": input_ids},
        "unit_locations": None,
        "max_new_tokens": max_new_tokens,
        "intervene_on_prompt": True,
        "subspaces": [
            {
                "idx": [int(sl["idx"]) for sl in subspaces_list],
                "mag": [int(sl["internal_mag"]) for sl in subspaces_list]
            }
        ] if subspaces_list else None,
        "streamer": streamer,
        "do_sample": True
    }

    t = Thread(target=pv_model.generate, kwargs=generate_kwargs)
    t.start()

    partial_text = []
    for token_str in streamer:
        partial_text.append(token_str)
        yield "".join(partial_text)

def filter_concepts(search_text: str):
    if not search_text.strip():
        return concept_list[:500]
    filtered = [c for c in concept_list if search_text.lower() in c.lower()]
    return filtered[:500]

def add_concept_to_list(selected_concept, user_slider_val, current_list):
    """
    Return exactly 2 values:
      1) The updated list of concepts (list of dicts).
      2) A Gradio update for the removal dropdown’s choices.
    """
    if not selected_concept:
        return current_list, gr.update(choices=_build_remove_choices(current_list))

    idx = concept_id_map[selected_concept]
    internal_mag = user_slider_val * 50
    new_entry = {
        "text": selected_concept,
        "idx": idx,
        "display_mag": user_slider_val,
        "internal_mag": internal_mag,
    }
    updated_list = current_list + [new_entry]
    return updated_list, gr.update(choices=_build_remove_choices(updated_list))

def remove_concept_from_list(selected_text, current_list):
    """
    Return exactly 2 values:
      1) The updated list of concepts (list of dicts).
      2) A Gradio update for the removal dropdown’s choices.
    """
    if not selected_text:
        return current_list, gr.update(choices=_build_remove_choices(current_list))
    updated_list = [x for x in current_list if x["text"] != selected_text]
    return updated_list, gr.update(choices=_build_remove_choices(updated_list))

def _build_remove_choices(subspaces):
    return [x["text"] for x in subspaces]

def update_dropdown_choices(search_text):
    filtered = filter_concepts(search_text)
    return gr.update(choices=filtered)

with gr.Blocks(css="style.css") as demo:

    # Pre-populate with a random concept if available
    default_subspaces = []
    if pv_model and concept_list:
        default_concept = "words related to time travel and its consequences"
        default_subspaces = [{
            "text": default_concept,
            "idx": concept_id_map[default_concept],
            "display_mag": 3,
            "internal_mag": 150.0,
        }]

    selected_subspaces = gr.State(default_subspaces)
    with gr.Row():
        # Left side: bigger chat area
        with gr.Column(scale=7):
            chat_interface = gr.ChatInterface(
                fn=generate,
                title="LM Steering with ReFT-r1 (16K concepts)",
                type="messages",
                additional_inputs=[selected_subspaces],
            )
        # Right side: concept management
        with gr.Column(scale=3):
            gr.Markdown("# Steering Concepts")
            search_box = gr.Textbox(
                label="Search concepts",
                placeholder="e.g. 'time travel'"
            )
            concept_dropdown = gr.Dropdown(
                label="Filtered Concepts",
                choices=[]
            )
            concept_magnitude = gr.Slider(
                label="Steering Factor",
                minimum=-5,
                maximum=5,
                step=1,
                value=3
            )
            add_button = gr.Button("Add Concept")

            # Row with the remove dropdown + button
            with gr.Row():
                remove_dropdown = gr.Dropdown(
                    label="Remove concept",
                    choices=_build_remove_choices(default_subspaces),
                    multiselect=False
                )
                remove_button = gr.Button("Remove", variant="secondary")

    # Wire up events
    # When the search box changes, update the concept dropdown choices:
    search_box.change(
        update_dropdown_choices,
        [search_box],
        [concept_dropdown]
    )

    # When "Add Concept" is clicked, add the concept + magnitude to the list,
    # and update the "Remove" dropdown choices.
    add_button.click(
        add_concept_to_list,
        [concept_dropdown, concept_magnitude, selected_subspaces],
        [selected_subspaces, remove_dropdown]
    )

    # When "Remove" is clicked, remove the selected concept from the list,
    # and update the "Remove" dropdown choices.
    remove_button.click(
        remove_concept_from_list,
        [remove_dropdown, selected_subspaces],
        [selected_subspaces, remove_dropdown]
    )

    demo.launch()