Spaces:
Running
on
Zero
Running
on
Zero
frankaging
commited on
Commit
·
1baa5c3
1
Parent(s):
7497e24
o1 impl
Browse files
app.py
CHANGED
@@ -45,20 +45,20 @@ class Steer(pv.SourcelessIntervention):
|
|
45 |
|
46 |
def forward(self, base, source=None, subspaces=None):
|
47 |
# subspaces is a list of dicts:
|
48 |
-
# each has {"idx": int, "internal_mag": float, ...}
|
49 |
steer_vec = base
|
50 |
if subspaces is not None:
|
51 |
for sp in subspaces:
|
52 |
idx = sp["idx"]
|
53 |
-
#
|
54 |
-
mag = sp["internal_mag"]
|
55 |
steering_vec = mag * self.proj.weight[idx].unsqueeze(dim=0)
|
56 |
steer_vec = steer_vec + steering_vec
|
57 |
return steer_vec
|
58 |
|
59 |
-
|
60 |
-
#
|
61 |
-
#
|
|
|
62 |
if not torch.cuda.is_available():
|
63 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo won't perform well on CPU.</p>"
|
64 |
|
@@ -91,10 +91,9 @@ if torch.cuda.is_available():
|
|
91 |
terminators = [tokenizer.eos_token_id]
|
92 |
|
93 |
|
94 |
-
#
|
95 |
-
#
|
96 |
-
#
|
97 |
-
# ---------------------------------------------------------------------
|
98 |
@spaces.GPU
|
99 |
def generate(
|
100 |
message: str,
|
@@ -107,31 +106,36 @@ def generate(
|
|
107 |
start_idx = max(0, len(chat_history) - 3)
|
108 |
recent_history = chat_history[start_idx:]
|
109 |
|
110 |
-
#
|
111 |
-
# each tuple is (user_message, model_message)
|
112 |
messages = []
|
113 |
for user_msg, model_msg in recent_history:
|
114 |
messages.append({"role": "user", "content": user_msg})
|
115 |
messages.append({"role": "model", "content": model_msg})
|
116 |
|
117 |
-
#
|
118 |
messages.append({"role": "user", "content": message})
|
119 |
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
-
# Possibly trim if
|
124 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
125 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
|
|
126 |
yield "\n[Warning: Truncated conversation exceeds max allowed input tokens]\n"
|
127 |
|
128 |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
129 |
generate_kwargs = {
|
130 |
-
"base": {"input_ids": input_ids},
|
131 |
"unit_locations": None,
|
132 |
"max_new_tokens": max_new_tokens,
|
133 |
"intervene_on_prompt": True,
|
134 |
-
"subspaces": subspaces_list,
|
135 |
"streamer": streamer,
|
136 |
"eos_token_id": terminators,
|
137 |
"early_stopping": True,
|
@@ -147,11 +151,11 @@ def generate(
|
|
147 |
yield "".join(partial_text)
|
148 |
|
149 |
|
150 |
-
#
|
151 |
# UI Callbacks
|
152 |
-
#
|
153 |
def filter_concepts(search_text: str):
|
154 |
-
"""Return the first
|
155 |
if not search_text.strip():
|
156 |
return concept_list[:500]
|
157 |
filtered = [c for c in concept_list if search_text.lower() in c.lower()]
|
@@ -159,87 +163,75 @@ def filter_concepts(search_text: str):
|
|
159 |
|
160 |
def add_concept_to_list(selected_concept, user_slider_val, current_list):
|
161 |
"""
|
162 |
-
|
163 |
-
scaled magnitude to the subspaces list.
|
164 |
-
|
165 |
-
user_slider_val is from [-5..5], we multiply by 50 internally.
|
166 |
"""
|
167 |
if not selected_concept:
|
168 |
-
return current_list, _build_table_data(current_list)
|
169 |
|
170 |
concept_idx = concept_id_map[selected_concept]
|
171 |
-
|
172 |
-
# Multiply slider by 50 internally
|
173 |
-
internal_mag = user_slider_val * 50
|
174 |
-
|
175 |
-
# We'll store both displayed magnitude (for the table) and the internal
|
176 |
-
# magnitude for the model. Also store 'text' for easy display.
|
177 |
new_entry = {
|
178 |
"text": selected_concept,
|
179 |
"idx": concept_idx,
|
180 |
"display_mag": user_slider_val,
|
181 |
"internal_mag": internal_mag,
|
182 |
}
|
183 |
-
|
184 |
-
# Avoid duplicates if you prefer:
|
185 |
-
# e.g. check if concept_idx already in current_list. We'll skip that for now.
|
186 |
updated_list = current_list + [new_entry]
|
187 |
-
return
|
|
|
|
|
|
|
|
|
188 |
|
189 |
-
def
|
190 |
"""
|
191 |
-
|
192 |
-
selected_rows is a list of selected row indices,
|
193 |
-
e.g. [1] meaning row with index 1 is selected.
|
194 |
"""
|
195 |
-
if not
|
196 |
-
return current_list, _build_table_data(current_list)
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
updated_list
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
|
205 |
def _build_table_data(subspaces):
|
206 |
-
"""
|
207 |
-
Build a list of [concept_text, display_mag] to show in the table.
|
208 |
-
"""
|
209 |
return [[x["text"], x["display_mag"]] for x in subspaces]
|
210 |
|
|
|
|
|
|
|
|
|
211 |
def update_dropdown_choices(search_text):
|
212 |
filtered = filter_concepts(search_text)
|
213 |
return gr.update(choices=filtered)
|
214 |
|
215 |
-
|
216 |
-
#
|
217 |
-
#
|
218 |
-
# -------------------------
|
219 |
with gr.Blocks(css="style.css") as demo:
|
220 |
gr.Markdown(DESCRIPTION)
|
221 |
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
|
222 |
|
223 |
-
# If GPU is available,
|
224 |
default_subspaces = []
|
225 |
if torch.cuda.is_available() and len(concept_list) > 0:
|
226 |
-
|
227 |
-
default_concept = concept_list[default_index]
|
228 |
-
default_concept_idx = concept_id_map[default_concept]
|
229 |
-
# default slider is 3 => 3*50=150 internally
|
230 |
default_subspaces = [{
|
231 |
"text": default_concept,
|
232 |
-
"idx":
|
233 |
-
"display_mag": 3, #
|
234 |
-
"internal_mag": 150.0, # actual
|
235 |
}]
|
236 |
|
237 |
-
# Keep state of subspaces
|
238 |
selected_subspaces = gr.State(default_subspaces)
|
239 |
|
240 |
with gr.Row():
|
241 |
-
# Left column: Chat
|
242 |
with gr.Column(scale=5):
|
|
|
243 |
chat_interface = gr.ChatInterface(
|
244 |
fn=generate,
|
245 |
additional_inputs=[
|
@@ -250,14 +242,14 @@ with gr.Blocks(css="style.css") as demo:
|
|
250 |
step=1,
|
251 |
value=DEFAULT_MAX_NEW_TOKENS,
|
252 |
),
|
253 |
-
selected_subspaces
|
254 |
],
|
255 |
title="Model Steering with ReFT-r1 (16K concepts)",
|
|
|
256 |
)
|
257 |
-
|
258 |
-
# Right column: concept searching, adding, table display, removal
|
259 |
with gr.Column(scale=4):
|
260 |
gr.Markdown("## Steering Concepts")
|
|
|
261 |
search_box = gr.Textbox(
|
262 |
label="Search concepts",
|
263 |
placeholder="Type text to filter concepts (e.g. 'sports')"
|
@@ -268,30 +260,35 @@ with gr.Blocks(css="style.css") as demo:
|
|
268 |
multiselect=False
|
269 |
)
|
270 |
concept_magnitude = gr.Slider(
|
271 |
-
label="Scaled Magnitude (
|
272 |
minimum=-5,
|
273 |
maximum=5,
|
274 |
-
step=1
|
275 |
value=3
|
276 |
)
|
277 |
add_button = gr.Button("Add Concept")
|
278 |
|
279 |
-
#
|
280 |
active_subspaces_table = gr.Dataframe(
|
281 |
headers=["Concept", "Magnitude (scaled)"],
|
282 |
datatype=["str", "number"],
|
|
|
283 |
interactive=False,
|
284 |
-
|
285 |
-
label="Active Concept Subspaces",
|
286 |
-
value=_build_table_data(default_subspaces)
|
287 |
)
|
288 |
|
289 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
|
291 |
gr.Markdown(LICENSE)
|
292 |
|
293 |
# Wire up events
|
294 |
-
#
|
295 |
search_box.change(
|
296 |
fn=update_dropdown_choices,
|
297 |
inputs=[search_box],
|
@@ -302,14 +299,14 @@ with gr.Blocks(css="style.css") as demo:
|
|
302 |
add_button.click(
|
303 |
fn=add_concept_to_list,
|
304 |
inputs=[concept_dropdown, concept_magnitude, selected_subspaces],
|
305 |
-
outputs=[selected_subspaces, active_subspaces_table],
|
306 |
)
|
307 |
|
308 |
-
# Remove
|
309 |
remove_button.click(
|
310 |
-
fn=
|
311 |
-
inputs=[
|
312 |
-
outputs=[selected_subspaces, active_subspaces_table],
|
313 |
)
|
314 |
|
315 |
demo.queue(max_size=20).launch()
|
|
|
45 |
|
46 |
def forward(self, base, source=None, subspaces=None):
|
47 |
# subspaces is a list of dicts:
|
48 |
+
# each has {"idx": int, "internal_mag": float, "text": str, ...}
|
49 |
steer_vec = base
|
50 |
if subspaces is not None:
|
51 |
for sp in subspaces:
|
52 |
idx = sp["idx"]
|
53 |
+
mag = sp["internal_mag"] # the true scaling factor
|
|
|
54 |
steering_vec = mag * self.proj.weight[idx].unsqueeze(dim=0)
|
55 |
steer_vec = steer_vec + steering_vec
|
56 |
return steer_vec
|
57 |
|
58 |
+
|
59 |
+
# ------------------------------------------
|
60 |
+
# Load the Model & Dictionary if GPU exists
|
61 |
+
# ------------------------------------------
|
62 |
if not torch.cuda.is_available():
|
63 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo won't perform well on CPU.</p>"
|
64 |
|
|
|
91 |
terminators = [tokenizer.eos_token_id]
|
92 |
|
93 |
|
94 |
+
# --------------------------------------------
|
95 |
+
# Main generation function: keep last 3 turns
|
96 |
+
# --------------------------------------------
|
|
|
97 |
@spaces.GPU
|
98 |
def generate(
|
99 |
message: str,
|
|
|
106 |
start_idx = max(0, len(chat_history) - 3)
|
107 |
recent_history = chat_history[start_idx:]
|
108 |
|
109 |
+
# Convert (user_msg, model_msg) => list of messages
|
|
|
110 |
messages = []
|
111 |
for user_msg, model_msg in recent_history:
|
112 |
messages.append({"role": "user", "content": user_msg})
|
113 |
messages.append({"role": "model", "content": model_msg})
|
114 |
|
115 |
+
# Add the new user message
|
116 |
messages.append({"role": "user", "content": message})
|
117 |
|
118 |
+
# Apply the chat template (some HF models expect "assistant" instead of "model")
|
119 |
+
# but let's keep "model" to match your code, if that is required.
|
120 |
+
prompt_dict = tokenizer.apply_chat_template(
|
121 |
+
messages, tokenize=True, add_generation_prompt=True
|
122 |
+
)
|
123 |
+
input_ids = torch.tensor([prompt_dict["input_ids"]]).cuda()
|
124 |
+
attention_mask = torch.tensor([prompt_dict["attention_mask"]]).cuda()
|
125 |
|
126 |
+
# Possibly trim if too long
|
127 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
128 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
129 |
+
attention_mask = attention_mask[:, -MAX_INPUT_TOKEN_LENGTH:]
|
130 |
yield "\n[Warning: Truncated conversation exceeds max allowed input tokens]\n"
|
131 |
|
132 |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
133 |
generate_kwargs = {
|
134 |
+
"base": {"input_ids": input_ids, "attention_mask": attention_mask},
|
135 |
"unit_locations": None,
|
136 |
"max_new_tokens": max_new_tokens,
|
137 |
"intervene_on_prompt": True,
|
138 |
+
"subspaces": subspaces_list,
|
139 |
"streamer": streamer,
|
140 |
"eos_token_id": terminators,
|
141 |
"early_stopping": True,
|
|
|
151 |
yield "".join(partial_text)
|
152 |
|
153 |
|
154 |
+
# ----------------
|
155 |
# UI Callbacks
|
156 |
+
# ----------------
|
157 |
def filter_concepts(search_text: str):
|
158 |
+
"""Return the first 500 concepts that match (case-insensitive)."""
|
159 |
if not search_text.strip():
|
160 |
return concept_list[:500]
|
161 |
filtered = [c for c in concept_list if search_text.lower() in c.lower()]
|
|
|
163 |
|
164 |
def add_concept_to_list(selected_concept, user_slider_val, current_list):
|
165 |
"""
|
166 |
+
user_slider_val is from [-5..5]. We multiply by 50 internally to get the real magnitude.
|
|
|
|
|
|
|
167 |
"""
|
168 |
if not selected_concept:
|
169 |
+
return current_list, _build_table_data(current_list), gr.update(choices=_build_remove_choices(current_list))
|
170 |
|
171 |
concept_idx = concept_id_map[selected_concept]
|
172 |
+
internal_mag = user_slider_val * 50 # scale by 50
|
|
|
|
|
|
|
|
|
|
|
173 |
new_entry = {
|
174 |
"text": selected_concept,
|
175 |
"idx": concept_idx,
|
176 |
"display_mag": user_slider_val,
|
177 |
"internal_mag": internal_mag,
|
178 |
}
|
|
|
|
|
|
|
179 |
updated_list = current_list + [new_entry]
|
180 |
+
return (
|
181 |
+
updated_list,
|
182 |
+
_build_table_data(updated_list),
|
183 |
+
gr.update(choices=_build_remove_choices(updated_list))
|
184 |
+
)
|
185 |
|
186 |
+
def remove_concept_from_list(concept_to_remove, current_list):
|
187 |
"""
|
188 |
+
Remove the chosen concept name from the list.
|
|
|
|
|
189 |
"""
|
190 |
+
if not concept_to_remove:
|
191 |
+
return current_list, _build_table_data(current_list), gr.update(choices=_build_remove_choices(current_list))
|
192 |
+
|
193 |
+
updated_list = [x for x in current_list if x["text"] != concept_to_remove]
|
194 |
+
return (
|
195 |
+
updated_list,
|
196 |
+
_build_table_data(updated_list),
|
197 |
+
gr.update(choices=_build_remove_choices(updated_list))
|
198 |
+
)
|
199 |
|
200 |
def _build_table_data(subspaces):
|
201 |
+
"""Return [[concept_name, scaled_mag], ...] for display."""
|
|
|
|
|
202 |
return [[x["text"], x["display_mag"]] for x in subspaces]
|
203 |
|
204 |
+
def _build_remove_choices(subspaces):
|
205 |
+
"""Return concept names for the remove dropdown."""
|
206 |
+
return [x["text"] for x in subspaces]
|
207 |
+
|
208 |
def update_dropdown_choices(search_text):
|
209 |
filtered = filter_concepts(search_text)
|
210 |
return gr.update(choices=filtered)
|
211 |
|
212 |
+
# --------------------------------------------------------------------
|
213 |
+
# Build the Interface
|
214 |
+
# --------------------------------------------------------------------
|
|
|
215 |
with gr.Blocks(css="style.css") as demo:
|
216 |
gr.Markdown(DESCRIPTION)
|
217 |
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
|
218 |
|
219 |
+
# If GPU is available, pick a random concept as default
|
220 |
default_subspaces = []
|
221 |
if torch.cuda.is_available() and len(concept_list) > 0:
|
222 |
+
default_concept = random.choice(concept_list)
|
|
|
|
|
|
|
223 |
default_subspaces = [{
|
224 |
"text": default_concept,
|
225 |
+
"idx": concept_id_map[default_concept],
|
226 |
+
"display_mag": 3, # user sees 3
|
227 |
+
"internal_mag": 150.0, # actual factor
|
228 |
}]
|
229 |
|
|
|
230 |
selected_subspaces = gr.State(default_subspaces)
|
231 |
|
232 |
with gr.Row():
|
|
|
233 |
with gr.Column(scale=5):
|
234 |
+
# Use type="messages" to avoid tuple-format deprecation warnings
|
235 |
chat_interface = gr.ChatInterface(
|
236 |
fn=generate,
|
237 |
additional_inputs=[
|
|
|
242 |
step=1,
|
243 |
value=DEFAULT_MAX_NEW_TOKENS,
|
244 |
),
|
245 |
+
selected_subspaces
|
246 |
],
|
247 |
title="Model Steering with ReFT-r1 (16K concepts)",
|
248 |
+
type="messages", # <--- uses openai-style 'role' and 'content'
|
249 |
)
|
|
|
|
|
250 |
with gr.Column(scale=4):
|
251 |
gr.Markdown("## Steering Concepts")
|
252 |
+
|
253 |
search_box = gr.Textbox(
|
254 |
label="Search concepts",
|
255 |
placeholder="Type text to filter concepts (e.g. 'sports')"
|
|
|
260 |
multiselect=False
|
261 |
)
|
262 |
concept_magnitude = gr.Slider(
|
263 |
+
label="Scaled Magnitude (×50 internally)",
|
264 |
minimum=-5,
|
265 |
maximum=5,
|
266 |
+
step=1,
|
267 |
value=3
|
268 |
)
|
269 |
add_button = gr.Button("Add Concept")
|
270 |
|
271 |
+
# Show the table of active subspaces
|
272 |
active_subspaces_table = gr.Dataframe(
|
273 |
headers=["Concept", "Magnitude (scaled)"],
|
274 |
datatype=["str", "number"],
|
275 |
+
value=_build_table_data(default_subspaces),
|
276 |
interactive=False,
|
277 |
+
label="Active Concept Subspaces"
|
|
|
|
|
278 |
)
|
279 |
|
280 |
+
# Remove concept by name
|
281 |
+
remove_dropdown = gr.Dropdown(
|
282 |
+
label="Remove a concept",
|
283 |
+
choices=_build_remove_choices(default_subspaces),
|
284 |
+
multiselect=False
|
285 |
+
)
|
286 |
+
remove_button = gr.Button("Remove Selected Concept")
|
287 |
|
288 |
gr.Markdown(LICENSE)
|
289 |
|
290 |
# Wire up events
|
291 |
+
# Update concept dropdown when user types in search
|
292 |
search_box.change(
|
293 |
fn=update_dropdown_choices,
|
294 |
inputs=[search_box],
|
|
|
299 |
add_button.click(
|
300 |
fn=add_concept_to_list,
|
301 |
inputs=[concept_dropdown, concept_magnitude, selected_subspaces],
|
302 |
+
outputs=[selected_subspaces, active_subspaces_table, remove_dropdown],
|
303 |
)
|
304 |
|
305 |
+
# Remove a concept
|
306 |
remove_button.click(
|
307 |
+
fn=remove_concept_from_list,
|
308 |
+
inputs=[remove_dropdown, selected_subspaces],
|
309 |
+
outputs=[selected_subspaces, active_subspaces_table, remove_dropdown],
|
310 |
)
|
311 |
|
312 |
demo.queue(max_size=20).launch()
|