Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,806 Bytes
7497e24 f860e61 0e90065 f860e61 330e95b f860e61 0e90065 f860e61 0e90065 e39562b 0e90065 330e95b f860e61 330e95b f860e61 330e95b f860e61 e39562b f860e61 330e95b e39562b 0e90065 e39562b 0e90065 330e95b e39562b f860e61 330e95b f860e61 330e95b f860e61 0e90065 e39562b 0e90065 f860e61 0e90065 e39562b f860e61 e39562b f860e61 7497e24 f860e61 7497e24 f860e61 e39562b f860e61 e39562b 0e90065 e39562b f860e61 0e90065 e39562b 330e95b 0e90065 1baa5c3 0e90065 330e95b 0e90065 f860e61 7497e24 f860e61 1baa5c3 e39562b 7497e24 e39562b 7497e24 1baa5c3 7497e24 e39562b 1baa5c3 e39562b 1baa5c3 7497e24 f860e61 1baa5c3 f860e61 0e90065 e39562b f860e61 e39562b 7497e24 e39562b 1baa5c3 7497e24 1baa5c3 e39562b 7497e24 f860e61 e39562b 7497e24 e39562b 7497e24 e39562b f860e61 e39562b f860e61 e39562b f860e61 ea4a182 7497e24 1baa5c3 7497e24 f860e61 e39562b 7497e24 1baa5c3 f860e61 e39562b f860e61 e39562b 0e90065 f860e61 e39562b f860e61 e39562b f860e61 e39562b a0e20f1 e39562b f860e61 e39562b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import os, json, random
import torch
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from huggingface_hub import login, hf_hub_download
import pyvene as pv
from threading import Thread
from typing import Iterator
HF_TOKEN = os.environ.get("HF_TOKEN")
login(token=HF_TOKEN)
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 512 # smaller default to save memory
MAX_INPUT_TOKEN_LENGTH = 4096
def load_jsonl(jsonl_path):
jsonl_data = []
with open(jsonl_path, 'r') as f:
for line in f:
data = json.loads(line)
jsonl_data.append(data)
return jsonl_data
class Steer(pv.SourcelessIntervention):
def __init__(self, **kwargs):
super().__init__(**kwargs, keep_last_dim=True)
self.proj = torch.nn.Linear(self.embed_dim, kwargs["latent_dim"], bias=False)
def forward(self, base, source=None, subspaces=None):
steer_vec = base
if subspaces is not None:
for sp in subspaces:
idx = sp["idx"]
mag = sp["internal_mag"] # scaled by 50
steering_vec = mag * self.proj.weight[idx].unsqueeze(dim=0)
steer_vec = steer_vec + steering_vec
return steer_vec
# Check GPU
if not torch.cuda.is_available():
print("Warning: Running on CPU, may be slow.")
# Load model & dictionary
model_id = "google/gemma-2-2b-it"
pv_model = None
tokenizer = None
concept_list = []
concept_id_map = {}
if torch.cuda.is_available():
model = AutoModelForCausalLM.from_pretrained(
model_id, device_map="cuda", torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Download dictionary
weight_path = hf_hub_download(repo_id="pyvene/gemma-reft-2b-it-res", filename="l20/weight.pt")
meta_path = hf_hub_download(repo_id="pyvene/gemma-reft-2b-it-res", filename="l20/metadata.jsonl")
params = torch.load(weight_path).cuda()
md = load_jsonl(meta_path)
concept_list = [item["concept"] for item in md]
concept_id_map = {item["concept"]: item["concept_id"] for item in md}
steer = Steer(embed_dim=params.shape[0], latent_dim=params.shape[1])
steer.proj.weight.data = params.float()
pv_model = pv.IntervenableModel(
{
"component": f"model.layers[20].output",
"intervention": steer,
},
model=model,
)
terminators = [tokenizer.eos_token_id] if tokenizer else []
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int,
subspaces_list: list[dict],
) -> Iterator[str]:
# limit to last 3 turns
start_idx = max(0, len(chat_history) - 3)
recent_history = chat_history[start_idx:]
# build list of messages
messages = []
for user_msg, model_msg in recent_history:
messages.append({"role": "user", "content": user_msg})
messages.append({"role": "model", "content": model_msg})
messages.append({"role": "user", "content": message})
input_ids = torch.tensor([tokenizer.apply_chat_template(
messages, tokenize=True, add_generation_prompt=True)]).cuda()
# trim if needed
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
yield "[Truncated prior text]\n"
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = {
"base": {"input_ids": input_ids},
"unit_locations": None,
"max_new_tokens": max_new_tokens,
"intervene_on_prompt": True,
"subspaces": subspaces_list,
"streamer": streamer,
"eos_token_id": terminators,
"early_stopping": True,
"do_sample": True
}
t = Thread(target=pv_model.generate, kwargs=generate_kwargs)
t.start()
partial_text = []
for token_str in streamer:
partial_text.append(token_str)
yield "".join(partial_text)
def filter_concepts(search_text: str):
if not search_text.strip():
return concept_list[:500]
filtered = [c for c in concept_list if search_text.lower() in c.lower()]
return filtered[:500]
def add_concept_to_list(selected_concept, user_slider_val, current_list):
if not selected_concept:
return current_list, _build_table_data(current_list), gr.update(choices=_build_remove_choices(current_list))
idx = concept_id_map[selected_concept]
internal_mag = user_slider_val * 50
new_entry = {
"text": selected_concept,
"idx": idx,
"display_mag": user_slider_val,
"internal_mag": internal_mag,
}
updated_list = current_list + [new_entry]
return (
updated_list,
_build_table_data(updated_list),
gr.update(choices=_build_remove_choices(updated_list))
)
def remove_concept_from_list(selected_text, current_list):
if not selected_text:
return current_list, _build_table_data(current_list), gr.update(choices=_build_remove_choices(current_list))
updated_list = [x for x in current_list if x["text"] != selected_text]
return (
updated_list,
_build_table_data(updated_list),
gr.update(choices=_build_remove_choices(updated_list))
)
def _build_table_data(subspaces):
return [[x["text"], x["display_mag"]] for x in subspaces]
def _build_remove_choices(subspaces):
return [x["text"] for x in subspaces]
def update_dropdown_choices(search_text):
filtered = filter_concepts(search_text)
return gr.update(choices=filtered)
with gr.Blocks(css="style.css") as demo:
# A short title only
gr.Markdown("## Model Steering with ReFT-r1 (16K concepts)")
# Pre-populate with a random concept if available
default_subspaces = []
if pv_model and concept_list:
default_concept = random.choice(concept_list)
default_subspaces = [{
"text": default_concept,
"idx": concept_id_map[default_concept],
"display_mag": 3,
"internal_mag": 150.0,
}]
selected_subspaces = gr.State(default_subspaces)
with gr.Row():
# Left side: bigger chat area
with gr.Column(scale=7):
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[], # we'll put the max tokens slider below
title="",
type="messages",
)
# Right side: concept management
with gr.Column(scale=3):
gr.Markdown("### Steering Concepts")
search_box = gr.Textbox(
label="Search concepts",
placeholder="e.g. 'time travel'"
)
concept_dropdown = gr.Dropdown(
label="Filtered Concepts",
choices=[]
)
concept_magnitude = gr.Slider(
label="Steering Factor",
minimum=-5,
maximum=5,
step=1,
value=3
)
add_button = gr.Button("Add Concept")
active_subspaces_table = gr.Dataframe(
headers=["Concept", "Mag (scaled)"],
datatype=["str", "number"],
value=_build_table_data(default_subspaces),
interactive=False,
label="Active Concept Subspaces",
)
# Row with the remove dropdown + button
with gr.Row():
remove_dropdown = gr.Dropdown(
label="Remove concept",
choices=_build_remove_choices(default_subspaces),
multiselect=False
)
remove_button = gr.Button("Remove", variant="secondary")
# Place the max tokens slider at bottom, smaller
with gr.Row():
gr.Markdown("**Max New Tokens**", elem_classes=["small-label"])
max_token_slider = gr.Slider(
minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1,
value=DEFAULT_MAX_NEW_TOKENS,
label="", # hide the big label
container=False,
)
# Wire up events
search_box.change(update_dropdown_choices, [search_box], [concept_dropdown])
add_button.click(
add_concept_to_list,
[concept_dropdown, concept_magnitude, selected_subspaces],
[selected_subspaces, active_subspaces_table, remove_dropdown]
)
remove_button.click(
remove_concept_from_list,
[remove_dropdown, selected_subspaces],
[selected_subspaces, active_subspaces_table, remove_dropdown]
)
# Link the slider back to chat generation
chat_interface.config(
extra_inputs=[max_token_slider, selected_subspaces]
)
demo.launch()
|