Spaces:
Running
Running
File size: 14,338 Bytes
d0be050 4baa3bc 2ae4509 4baa3bc 71b8d91 4baa3bc 1a9ad9d 4baa3bc 1c793ed 71b8d91 1c793ed 2816564 1c793ed 8a5e05e 1c793ed 1a9ad9d 1c793ed 1a9ad9d 1c793ed 1a9ad9d c3ab01b 1c793ed f538e91 1c793ed 8a5e05e 1c793ed 8a5e05e 1c793ed 71b8d91 1c793ed a96c874 1c793ed f538e91 1c793ed 2816564 1c793ed a96c874 1c793ed b7b9574 a96c874 1c793ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
# import warnings
# warnings.filterwarnings("ignore")
import gradio as gr
import torch
#torch.set_num_threads(1)
from transformers import AutoModelForCausalLM, AutoTokenizer
from typing import Optional, Union, List, Dict, Any, Tuple
import random
import time
import datetime
import os
import re
import pandas as pd
from langchain.llms import HuggingFacePipeline
from transformers import pipeline
import requests
import urllib
from urllib.request import urlopen
from urllib.parse import urlencode
from urllib.error import HTTPError, URLError
from urllib.request import Request
import copy
from langchain import ConversationChain, LLMChain, PromptTemplate
from langchain.memory import ConversationBufferWindowMemory
import torch
import pickle
from abc import ABC, abstractmethod
from typing import List
import numpy as np
from dataclasses import dataclass
import numpy as np
name_model = "pythainlp/wangchanglm-7.5B-sft-en-sharded"
model = AutoModelForCausalLM.from_pretrained(
name_model,
device_map="auto",
torch_dtype=torch.bfloat16,
offload_folder="./",
low_cpu_mem_usage=True,
)
tokenizer = AutoTokenizer.from_pretrained("facebook/xglm-7.5B")
Thai = "Yes"
from transformers import AutoTokenizer,AutoModelForCausalLM
template = """
{history}
<human>: {human_input}
<bot>:"""
prompt = PromptTemplate(
input_variables=["history", "human_input"],
template=template
)
exclude_pattern = re.compile(r'[^ก-๙]+') #|[^0-9a-zA-Z]+
def is_exclude(text):
return bool(exclude_pattern.search(text))
df = pd.DataFrame(tokenizer.vocab.items(), columns=['text', 'idx'])
df['is_exclude'] = df.text.map(is_exclude)
exclude_ids = df[df.is_exclude==True].idx.tolist()
if Thai=="Yes":
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
begin_suppress_tokens=exclude_ids,
no_repeat_ngram_size=2,
)
else:
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
no_repeat_ngram_size=2,
)
hf_pipeline = HuggingFacePipeline(pipeline=pipe)
chatgpt_chain = LLMChain(
llm=hf_pipeline,
prompt=prompt,
verbose=True,
memory=ConversationBufferWindowMemory(k=2),
)
api_url = "https://wangchanglm.numfa.com/apiv2.php" # Don't open this url!!!
def sumbit_data(save,prompt,vote,feedback=None,max_len=None,temp=None,top_p=None,name_model=name_model):
api_url = "https://wangchanglm.numfa.com/apiv2.php"
myobj = {
'save': save,
'prompt':prompt,
'vote':vote,
'feedback':feedback,
'max_len':max_len,
'temp':temp,
'top_p':top_p,
'model':name_model
}
myobj=[(k, v) for k, v in myobj.items()]
myobj=urllib.parse.urlencode(myobj)
utf8 = bytes(myobj, 'utf-8')
#req = urllib.request.Request(api_url)
#req.add_header("Content-type", "application/x-www-form-urlencoded")
page=urllib.request.urlopen(api_url, utf8, 300).read()
return True
def gen_instruct(text,max_new_tokens=512,top_p=0.95,temperature=0.9,top_k=50):
batch = tokenizer(text, return_tensors="pt")
with torch.cuda.amp.autocast(): # cuda -> cpu if cpu
if Thai=="Yes":
output_tokens = model.generate(
input_ids=batch["input_ids"],
max_new_tokens=max_new_tokens, # 512
begin_suppress_tokens = exclude_ids,
no_repeat_ngram_size=2,
#oasst k50
top_k=top_k,
top_p=top_p, # 0.95
typical_p=1.,
temperature=temperature, # 0.9
)
else:
output_tokens = model.generate(
input_ids=batch["input_ids"],
max_new_tokens=max_new_tokens, # 512
no_repeat_ngram_size=2,
#oasst k50
top_k=top_k,
top_p=top_p, # 0.95
typical_p=1.,
temperature=temperature, # 0.9
)
return tokenizer.decode(output_tokens[0][len(batch["input_ids"][0]):], skip_special_tokens=True)
def gen_chatbot_old(text):
batch = tokenizer(text, return_tensors="pt")
#context_tokens = tokenizer(text, add_special_tokens=False)['input_ids']
#logits_processor = FocusContextProcessor(context_tokens, model.config.vocab_size, scaling_factor = 1.5)
with torch.cpu.amp.autocast(): # cuda if gpu
output_tokens = model.generate(
input_ids=batch["input_ids"],
max_new_tokens=512,
begin_suppress_tokens = exclude_ids,
no_repeat_ngram_size=2,
)
return tokenizer.decode(output_tokens[0], skip_special_tokens=True).split(": ")[-1]
def list2prompt(history):
_text = ""
for user,bot in history:
_text+="<human>: "+user+"\n<bot>: "
if bot!=None:
_text+=bot+"\n"
return _text
PROMPT_DICT = {
"prompt_input": (
"<context>: {input}\n<human>: {instruction}\n<bot>: "
),
"prompt_no_input": (
"<human>: {instruction}\n<bot>: "
),
}
def instruct_generate(
instruct: str,
input: str = 'none',
max_gen_len=512,
temperature: float = 0.1,
top_p: float = 0.75,
):
if input == 'none' or len(input)<2:
prompt = PROMPT_DICT['prompt_no_input'].format_map(
{'instruction': instruct, 'input': ''})
else:
prompt = PROMPT_DICT['prompt_input'].format_map(
{'instruction': instruct, 'input': input})
result = gen_instruct(prompt,max_gen_len,top_p,temperature)
return result
with gr.Blocks(height=900) as demo:
chatgpt_chain = LLMChain(
llm=hf_pipeline,
prompt=prompt,
verbose=True,
memory=ConversationBufferWindowMemory(k=2),
)
gr.Markdown(
"""
# 🐘 WangChanGLM v0.2 demo
[Blog](https://medium.com/@iwishcognitivedissonance/wangchanglm-the-thai-turned-multilingual-instruction-following-model-7aa9a0f51f5f) | [Codes](https://github.com/pythainlp/wangchanglm) | [Demo](https://colab.research.google.com/github/pythainlp/WangChanGLM/blob/main/demo/WangChanGLM_v0_1_demo.ipynb)
This demo use CPU only, so It may be slow or very slow. If you want the speed, try [Google colab](https://colab.research.google.com/github/pythainlp/WangChanGLM/blob/main/demo/WangChanGLM_v0_1_demo.ipynb).
**We do not guarantee a reply message.**
"""
)
with gr.Tab("Text Generation"):
with gr.Row():
with gr.Column():
instruction = gr.Textbox(lines=2, label="Instruction",max_lines=10)
input = gr.Textbox(
lines=2, label="Context input", placeholder='none',max_lines=5)
max_len = gr.Slider(minimum=1, maximum=1024,
value=512, label="Max new tokens")
with gr.Accordion(label='Advanced options', open=False):
temp = gr.Slider(minimum=0, maximum=1,
value=0.9, label="Temperature")
top_p = gr.Slider(minimum=0, maximum=1,
value=0.95, label="Top p")
run_botton = gr.Button("Run")
with gr.Column():
outputs = gr.Textbox(lines=10, label="Output")
with gr.Column(visible=False) as feedback_gen_box:
gen_radio = gr.Radio(
["Good", "Bad", "Report"], label="Do you think about the chat?")
feedback_gen = gr.Textbox(placeholder="Feedback chatbot",show_label=False, lines=4)
feedback_gen_submit = gr.Button("Submit Feedback")
with gr.Row(visible=False) as feedback_gen_ok:
gr.Markdown("Thank you for feedback.")
def save_up2(instruction, input,prompt,max_len,temp,top_p,choice,feedback):
save="gen"
if input == 'none' or len(input)<2:
_prompt = PROMPT_DICT['prompt_no_input'].format_map(
{'instruction': instruction, 'input': ''})
else:
_prompt = PROMPT_DICT['prompt_input'].format_map(
{'instruction': instruction, 'input': input})
prompt=_prompt+prompt
if choice=="Good":
sumbit_data(save=save,prompt=prompt,vote=1,feedback=feedback,max_len=max_len,temp=temp,top_p=top_p)
elif choice=="Bad":
sumbit_data(save=save,prompt=prompt,vote=0,feedback=feedback,max_len=max_len,temp=temp,top_p=top_p)
else:
sumbit_data(save=save,prompt=prompt,vote=3,feedback=feedback,max_len=max_len,temp=temp,top_p=top_p)
return {feedback_gen_box: gr.update(visible=False),feedback_gen_ok: gr.update(visible=True)}
def gen(instruct: str,input: str = 'none',max_gen_len=512,temperature: float = 0.1,top_p: float = 0.75):
feedback_gen_ok.update(visible=False)
_temp= instruct_generate(instruct,input,max_gen_len,temperature,top_p)
feedback_gen_box.update(visible=True)
return {outputs:_temp,feedback_gen_box: gr.update(visible=True),feedback_gen_ok: gr.update(visible=False)}
feedback_gen_submit.click(fn=save_up2, inputs=[instruction, input,outputs,max_len,temp,top_p,gen_radio,feedback_gen], outputs=[feedback_gen_box,feedback_gen_ok], queue=False)
inputs = [instruction, input, max_len, temp, top_p]
run_botton.click(fn=gen, inputs=inputs, outputs=[outputs,feedback_gen_box,feedback_gen_ok])
examples = gr.Examples(examples=["แต่งกลอนวันแม่","แต่งกลอนแปดวันแม่",'อยากลดความอ้วนทำไง','จงแต่งเรียงความเรื่องความฝันของคนรุ่นใหม่ต่อประเทศไทย'],inputs=[instruction])
with gr.Tab("ChatBot"):
with gr.Column():
chatbot = gr.Chatbot(label="Chat Message Box", placeholder="Chat Message Box",show_label=False).style(container=False)
with gr.Row():
with gr.Column(scale=0.85):
msg = gr.Textbox(placeholder="พิมพ์คำถามของคุณที่นี่... (กด enter หรือ submit หลังพิมพ์เสร็จ)",show_label=False)
with gr.Column(scale=0.15, min_width=0):
submit = gr.Button("Submit")
with gr.Column():
with gr.Column(visible=False) as feedback_chatbot_box:
chatbot_radio = gr.Radio(
["Good", "Bad", "Report"], label="Do you think about the chat?"
)
feedback_chatbot = gr.Textbox(placeholder="Feedback chatbot",show_label=False, lines=4)
feedback_chatbot_submit = gr.Button("Submit Feedback")
with gr.Row(visible=False) as feedback_chatbot_ok:
gr.Markdown("Thank you for feedback.")
clear = gr.Button("Clear")
def save_up(history,choice,feedback):
_bot = list2prompt(history)
x=False
if choice=="Good":
x=sumbit_data(save="chat",prompt=_bot,vote=1,feedback=feedback)
elif choice=="Bad":
x=sumbit_data(save="chat",prompt=_bot,vote=0,feedback=feedback)
else:
x=sumbit_data(save="chat",prompt=_bot,vote=3,feedback=feedback)
return {feedback_chatbot_ok: gr.update(visible=True),feedback_chatbot_box: gr.update(visible=False)}
def user(user_message, history):
bot_message = chatgpt_chain.predict(human_input=user_message)
history.append((user_message, bot_message))
return "", history,gr.update(visible=True)
def reset():
chatgpt_chain.memory.clear()
print("clear!")
feedback_chatbot_submit.click(fn=save_up, inputs=[chatbot,chatbot_radio,feedback_chatbot], outputs=[feedback_chatbot_ok,feedback_chatbot_box,], queue=False)
clear.click(reset, None, chatbot, queue=False)
submit_event = msg.submit(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot,feedback_chatbot_box], queue=True)
submit_click_event = submit.click(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot,feedback_chatbot_box], queue=True)
with gr.Tab("ChatBot without LangChain"):
chatbot2 = gr.Chatbot()
msg2 = gr.Textbox(label="Your sentence here... (press enter to submit)")
with gr.Column():
with gr.Column(visible=False) as feedback_chatbot_box2:
chatbot_radio2 = gr.Radio(
["Good", "Bad", "Report"], label="Do you think about the chat?"
)
feedback_chatbot2 = gr.Textbox(placeholder="Feedback chatbot",show_label=False, lines=4)
feedback_chatbot_submit2 = gr.Button("Submit Feedback")
with gr.Row(visible=False) as feedback_chatbot_ok2:
gr.Markdown("Thank you for feedback.")
def user2(user_message, history):
return "", history + [[user_message, None]]
def bot2(history):
_bot = list2prompt(history)
bot_message = gen_chatbot_old(_bot)
history[-1][1] = bot_message
return history,gr.update(visible=True)
def save_up2(history,choice,feedback):
_bot = list2prompt(history)
x=False
if choice=="Good":
x=sumbit_data(save="chat",prompt=_bot,vote=1,feedback=feedback,name_model=name_model+"-chat_old")
elif choice=="Bad":
x=sumbit_data(save="chat",prompt=_bot,vote=0,feedback=feedback,name_model=name_model+"-chat_old")
else:
x=sumbit_data(save="chat",prompt=_bot,vote=3,feedback=feedback,name_model=name_model+"-chat_old")
return {feedback_chatbot_ok2: gr.update(visible=True),feedback_chatbot_box2: gr.update(visible=False)}
msg2.submit(user2, [msg2, chatbot2], [msg2, chatbot2]).then(bot2, chatbot2, [chatbot2,feedback_chatbot_box2], queue=True)
feedback_chatbot_submit2.click(fn=save_up2, inputs=[chatbot2,chatbot_radio2,feedback_chatbot2], outputs=[feedback_chatbot_ok2,feedback_chatbot_box2], queue=False)
clear2 = gr.Button("Clear")
clear2.click(lambda: None, None, chatbot2, queue=False)
demo.queue()
demo.launch() |