Spaces:
Running
Running
Commit
·
1c793ed
1
Parent(s):
10f78b6
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,423 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import tensorflow_hub as hub
|
6 |
+
import tensorflow_text
|
7 |
+
|
8 |
+
|
9 |
+
class Encoder(ABC):
|
10 |
+
@abstractmethod
|
11 |
+
def encode(self, texts: List[str]) -> np.array:
|
12 |
+
"""
|
13 |
+
output dimension expected to be one dimension and normalized (unit vector)
|
14 |
+
"""
|
15 |
+
...
|
16 |
+
|
17 |
+
|
18 |
+
class MUSEEncoder(Encoder):
|
19 |
+
def __init__(self, model_url: str = "https://tfhub.dev/google/universal-sentence-encoder-multilingual/3"):
|
20 |
+
self.embed = hub.load(model_url)
|
21 |
+
|
22 |
+
def encode(self, texts: List[str]) -> np.array:
|
23 |
+
embeds = self.embed(texts).numpy()
|
24 |
+
embeds = embeds / np.linalg.norm(embeds, axis=1).reshape(embeds.shape[0], -1)
|
25 |
+
return embeds
|
26 |
+
|
27 |
+
|
28 |
+
from dataclasses import dataclass
|
29 |
+
from typing import Dict, List, Tuple
|
30 |
+
|
31 |
+
import numpy as np
|
32 |
+
import tensorflow as tf
|
33 |
+
|
34 |
+
|
35 |
+
@dataclass
|
36 |
+
class SensitiveTopic:
|
37 |
+
name: str
|
38 |
+
respond_message: str
|
39 |
+
sensitivity: float = None # range from 0 to 1
|
40 |
+
demonstrations: List[str] = None
|
41 |
+
adhoc_embeded_demonstrations: np.array = None # dimension = [N_ADHOC, DIM]. Please kindly note that this suppose to
|
42 |
+
|
43 |
+
|
44 |
+
DEFAULT_SENSITIVITY = 0.7
|
45 |
+
|
46 |
+
|
47 |
+
class SensitiveTopicProtector:
|
48 |
+
def __init__(
|
49 |
+
self,
|
50 |
+
sensitive_topics: List[SensitiveTopic],
|
51 |
+
encoder: Encoder = MUSEEncoder(),
|
52 |
+
default_sensitivity: float = DEFAULT_SENSITIVITY
|
53 |
+
):
|
54 |
+
self.sensitive_topics = sensitive_topics
|
55 |
+
self.default_sensitivity = default_sensitivity
|
56 |
+
self.encoder = encoder
|
57 |
+
self.topic_embeddings = self._get_topic_embeddings()
|
58 |
+
|
59 |
+
def _get_topic_embeddings(self) -> Dict[str, List[np.array]]:
|
60 |
+
topic_embeddings = {}
|
61 |
+
for topic in self.sensitive_topics:
|
62 |
+
current_topic_embeddings = None
|
63 |
+
if topic.demonstrations is not None:
|
64 |
+
current_topic_embeddings = self.encoder.encode(texts=topic.demonstrations) if current_topic_embeddings is None \
|
65 |
+
else np.concatenate((current_topic_embeddings, self.encoder.encode(texts=topic.demonstrations)), axis=0)
|
66 |
+
if topic.adhoc_embeded_demonstrations is not None:
|
67 |
+
current_topic_embeddings = topic.adhoc_embeded_demonstrations if current_topic_embeddings is None \
|
68 |
+
else np.concatenate((current_topic_embeddings, topic.adhoc_embeded_demonstrations), axis=0)
|
69 |
+
topic_embeddings[topic.name] = current_topic_embeddings
|
70 |
+
return topic_embeddings
|
71 |
+
|
72 |
+
def filter(self, text: str) -> Tuple[bool, str]:
|
73 |
+
is_sensitive, respond_message = False, None
|
74 |
+
text_embedding = self.encoder.encode([text,])
|
75 |
+
for topic in self.sensitive_topics:
|
76 |
+
risk_scores = np.einsum('ik,jk->j', text_embedding, self.topic_embeddings[topic.name])
|
77 |
+
max_risk_score = np.max(risk_scores)
|
78 |
+
if topic.sensitivity:
|
79 |
+
if max_risk_score > (1.0 - topic.sensitivity):
|
80 |
+
return True, topic.respond_message
|
81 |
+
continue
|
82 |
+
if max_risk_score > (1.0 - self.default_sensitivity):
|
83 |
+
return True, topic.respond_message
|
84 |
+
return is_sensitive, respond_message
|
85 |
+
|
86 |
+
@classmethod
|
87 |
+
def fromRaw(cls, raw_sensitive_topics: List[Dict], encoder: Encoder = MUSEEncoder(), default_sensitivity: float = DEFAULT_SENSITIVITY):
|
88 |
+
sensitive_topics = [SensitiveTopic(**topic) for topic in raw_sensitive_topics]
|
89 |
+
return cls(sensitive_topics=sensitive_topics, encoder=encoder, default_sensitivity=default_sensitivity)
|
90 |
+
|
91 |
+
|
92 |
+
import pickle
|
93 |
+
|
94 |
+
f = open("sensitive_topics.pkl", "rb")
|
95 |
+
sensitive_topics = pickle.load(f)
|
96 |
+
f.close()
|
97 |
+
|
98 |
+
guardian = SensitiveTopicProtector.fromRaw(sensitive_topics)
|
99 |
+
|
100 |
+
import warnings
|
101 |
+
warnings.filterwarnings("ignore")
|
102 |
+
import gradio as gr
|
103 |
+
import torch
|
104 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
105 |
+
from typing import Optional, Union, List, Dict, Any
|
106 |
+
import random
|
107 |
+
import time
|
108 |
+
import datetime
|
109 |
+
import os
|
110 |
+
import re
|
111 |
+
import pandas as pd
|
112 |
+
|
113 |
+
# name_model = "pythainlp/wangchanglm-7.5B-sft-adapter-merged-sharded"
|
114 |
+
model = AutoModelForCausalLM.from_pretrained(
|
115 |
+
name_model,
|
116 |
+
device_map="auto",
|
117 |
+
torch_dtype=torch.bfloat16,
|
118 |
+
offload_folder="./",
|
119 |
+
low_cpu_mem_usage=True,
|
120 |
+
)
|
121 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/xglm-7.5B")
|
122 |
+
|
123 |
+
|
124 |
+
Thai = "Yes"
|
125 |
+
|
126 |
+
from langchain.llms import HuggingFacePipeline
|
127 |
+
from transformers import pipeline
|
128 |
+
|
129 |
+
from langchain import ConversationChain, LLMChain, PromptTemplate
|
130 |
+
from langchain.memory import ConversationBufferWindowMemory
|
131 |
+
import torch
|
132 |
+
|
133 |
+
|
134 |
+
from transformers import AutoTokenizer,AutoModelForCausalLM
|
135 |
+
|
136 |
+
template = """
|
137 |
+
{history}
|
138 |
+
: {human_input}
|
139 |
+
:"""
|
140 |
+
|
141 |
+
prompt = PromptTemplate(
|
142 |
+
input_variables=["history", "human_input"],
|
143 |
+
template=template
|
144 |
+
)
|
145 |
+
exclude_pattern = re.compile(r'[^ก-๙]+') #|[^0-9a-zA-Z]+
|
146 |
+
def is_exclude(text):
|
147 |
+
return bool(exclude_pattern.search(text))
|
148 |
+
|
149 |
+
df = pd.DataFrame(tokenizer.vocab.items(), columns=['text', 'idx'])
|
150 |
+
df['is_exclude'] = df.text.map(is_exclude)
|
151 |
+
exclude_ids = df[df.is_exclude==True].idx.tolist()
|
152 |
+
if Thai=="Yes":
|
153 |
+
pipe = pipeline(
|
154 |
+
"text-generation",
|
155 |
+
model=model,
|
156 |
+
tokenizer=tokenizer,
|
157 |
+
max_new_tokens=512,
|
158 |
+
begin_suppress_tokens=exclude_ids,
|
159 |
+
no_repeat_ngram_size=2,
|
160 |
+
)
|
161 |
+
else:
|
162 |
+
pipe = pipeline(
|
163 |
+
"text-generation",
|
164 |
+
model=model,
|
165 |
+
tokenizer=tokenizer,
|
166 |
+
max_new_tokens=512,
|
167 |
+
no_repeat_ngram_size=2,
|
168 |
+
)
|
169 |
+
hf_pipeline = HuggingFacePipeline(pipeline=pipe)
|
170 |
+
|
171 |
+
chatgpt_chain = LLMChain(
|
172 |
+
llm=hf_pipeline,
|
173 |
+
prompt=prompt,
|
174 |
+
verbose=True,
|
175 |
+
memory=ConversationBufferWindowMemory(k=2),
|
176 |
+
)
|
177 |
+
|
178 |
+
|
179 |
+
api_url = "https://wangchanglm.numfa.com/api.php" # Don't open this url!!!
|
180 |
+
import requests
|
181 |
+
from urllib.request import urlopen
|
182 |
+
from urllib.parse import urlencode
|
183 |
+
from urllib.error import HTTPError, URLError
|
184 |
+
from urllib.request import Request
|
185 |
+
import copy
|
186 |
+
|
187 |
+
def sumbit_data(save,prompt,vote,feedback=None,max_len=None,temp=None,top_p=None,name_model=name_model):
|
188 |
+
api_url = "https://wangchanglm.numfa.com/api.php"
|
189 |
+
myobj = {
|
190 |
+
'save': save,
|
191 |
+
'prompt':prompt,
|
192 |
+
'vote':vote,
|
193 |
+
'feedback':feedback,
|
194 |
+
'max_len':max_len,
|
195 |
+
'temp':temp,
|
196 |
+
'top_p':top_p,
|
197 |
+
'model':name_model
|
198 |
+
}
|
199 |
+
_temp_url ="https://wangchanglm.numfa.com/api.php"
|
200 |
+
_temp_url += "?" + urlencode(myobj, doseq=True, safe="/")
|
201 |
+
html = urlopen(_temp_url).read().decode('utf-8')
|
202 |
+
return True
|
203 |
+
|
204 |
+
|
205 |
+
def gen_instruct(text,max_new_tokens=512,top_p=0.95,temperature=0.9,top_k=50):
|
206 |
+
batch = tokenizer(text, return_tensors="pt")
|
207 |
+
with torch.cuda.amp.autocast(): # cuda -> cpu if cpu
|
208 |
+
if Thai=="Yes":
|
209 |
+
output_tokens = model.generate(
|
210 |
+
input_ids=batch["input_ids"],
|
211 |
+
max_new_tokens=max_new_tokens, # 512
|
212 |
+
begin_suppress_tokens = exclude_ids,
|
213 |
+
no_repeat_ngram_size=2,
|
214 |
+
#oasst k50
|
215 |
+
top_k=top_k,
|
216 |
+
top_p=top_p, # 0.95
|
217 |
+
typical_p=1.,
|
218 |
+
temperature=temperature, # 0.9
|
219 |
+
)
|
220 |
+
else:
|
221 |
+
output_tokens = model.generate(
|
222 |
+
input_ids=batch["input_ids"],
|
223 |
+
max_new_tokens=max_new_tokens, # 512
|
224 |
+
no_repeat_ngram_size=2,
|
225 |
+
#oasst k50
|
226 |
+
top_k=top_k,
|
227 |
+
top_p=top_p, # 0.95
|
228 |
+
typical_p=1.,
|
229 |
+
temperature=temperature, # 0.9
|
230 |
+
)
|
231 |
+
return tokenizer.decode(output_tokens[0][len(batch["input_ids"][0]):], skip_special_tokens=True)
|
232 |
+
|
233 |
+
def gen_chatbot_old(text):
|
234 |
+
is_sensitive, respond_message = guardian.filter(text)
|
235 |
+
if is_sensitive:
|
236 |
+
return respond_message
|
237 |
+
|
238 |
+
batch = tokenizer(text, return_tensors="pt")
|
239 |
+
#context_tokens = tokenizer(text, add_special_tokens=False)['input_ids']
|
240 |
+
#logits_processor = FocusContextProcessor(context_tokens, model.config.vocab_size, scaling_factor = 1.5)
|
241 |
+
with torch.cpu.amp.autocast(): # cuda if gpu
|
242 |
+
output_tokens = model.generate(
|
243 |
+
input_ids=batch["input_ids"],
|
244 |
+
max_new_tokens=512,
|
245 |
+
begin_suppress_tokens = exclude_ids,
|
246 |
+
no_repeat_ngram_size=2,
|
247 |
+
)
|
248 |
+
return tokenizer.decode(output_tokens[0], skip_special_tokens=True).split(": ")[-1]
|
249 |
+
|
250 |
+
def list2prompt(history):
|
251 |
+
_text = ""
|
252 |
+
for user,bot in history:
|
253 |
+
_text+=": "+user+"\n: "
|
254 |
+
if bot!=None:
|
255 |
+
_text+=bot+"\n"
|
256 |
+
return _text
|
257 |
+
|
258 |
+
PROMPT_DICT = {
|
259 |
+
"prompt_input": (
|
260 |
+
": {input}\n: {instruction}\n: "
|
261 |
+
),
|
262 |
+
"prompt_no_input": (
|
263 |
+
": {instruction}\n: "
|
264 |
+
),
|
265 |
+
}
|
266 |
+
|
267 |
+
def instruct_generate(
|
268 |
+
instruct: str,
|
269 |
+
input: str = 'none',
|
270 |
+
max_gen_len=512,
|
271 |
+
temperature: float = 0.1,
|
272 |
+
top_p: float = 0.75,
|
273 |
+
):
|
274 |
+
is_sensitive, respond_message = guardian.filter(instruct)
|
275 |
+
if is_sensitive:
|
276 |
+
return respond_message
|
277 |
+
|
278 |
+
if input == 'none' or len(input)<2:
|
279 |
+
prompt = PROMPT_DICT['prompt_no_input'].format_map(
|
280 |
+
{'instruction': instruct, 'input': ''})
|
281 |
+
else:
|
282 |
+
prompt = PROMPT_DICT['prompt_input'].format_map(
|
283 |
+
{'instruction': instruct, 'input': input})
|
284 |
+
result = gen_instruct(prompt,max_gen_len,top_p,temperature)
|
285 |
+
return result
|
286 |
+
|
287 |
+
with gr.Blocks(height=900) as demo:
|
288 |
+
chatgpt_chain = LLMChain(
|
289 |
+
llm=hf_pipeline,
|
290 |
+
prompt=prompt,
|
291 |
+
verbose=True,
|
292 |
+
memory=ConversationBufferWindowMemory(k=2),
|
293 |
+
)
|
294 |
+
with gr.Tab("Text Generation"):
|
295 |
+
with gr.Row():
|
296 |
+
with gr.Column():
|
297 |
+
instruction = gr.Textbox(lines=2, label="Instruction",max_lines=10)
|
298 |
+
input = gr.Textbox(
|
299 |
+
lines=2, label="Context input", placeholder='none',max_lines=5)
|
300 |
+
max_len = gr.Slider(minimum=1, maximum=1024,
|
301 |
+
value=512, label="Max new tokens")
|
302 |
+
with gr.Accordion(label='Advanced options', open=False):
|
303 |
+
temp = gr.Slider(minimum=0, maximum=1,
|
304 |
+
value=0.9, label="Temperature")
|
305 |
+
top_p = gr.Slider(minimum=0, maximum=1,
|
306 |
+
value=0.95, label="Top p")
|
307 |
+
|
308 |
+
run_botton = gr.Button("Run")
|
309 |
+
|
310 |
+
with gr.Column():
|
311 |
+
outputs = gr.Textbox(lines=10, label="Output")
|
312 |
+
with gr.Column(visible=False) as feedback_gen_box:
|
313 |
+
gen_radio = gr.Radio(
|
314 |
+
["Good", "Bad", "Report"], label="Do you think about the chat?")
|
315 |
+
feedback_gen = gr.Textbox(placeholder="Feedback chatbot",show_label=False, lines=4)
|
316 |
+
feedback_gen_submit = gr.Button("Submit Feedback")
|
317 |
+
with gr.Row(visible=False) as feedback_gen_ok:
|
318 |
+
gr.Markdown("Thank you for feedback.")
|
319 |
+
|
320 |
+
def save_up2(instruction, input,prompt,max_len,temp,top_p,choice,feedback):
|
321 |
+
save="gen"
|
322 |
+
if input == 'none' or len(input)<2:
|
323 |
+
_prompt = PROMPT_DICT['prompt_no_input'].format_map(
|
324 |
+
{'instruction': instruction, 'input': ''})
|
325 |
+
else:
|
326 |
+
_prompt = PROMPT_DICT['prompt_input'].format_map(
|
327 |
+
{'instruction': instruction, 'input': input})
|
328 |
+
prompt=_prompt+prompt
|
329 |
+
if choice=="Good":
|
330 |
+
sumbit_data(save=save,prompt=prompt,vote=1,feedback=feedback,max_len=max_len,temp=temp,top_p=top_p)
|
331 |
+
elif choice=="Bad":
|
332 |
+
sumbit_data(save=save,prompt=prompt,vote=0,feedback=feedback,max_len=max_len,temp=temp,top_p=top_p)
|
333 |
+
else:
|
334 |
+
sumbit_data(save=save,prompt=prompt,vote=3,feedback=feedback,max_len=max_len,temp=temp,top_p=top_p)
|
335 |
+
return {feedback_gen_box: gr.update(visible=False),feedback_gen_ok: gr.update(visible=True)}
|
336 |
+
def gen(instruct: str,input: str = 'none',max_gen_len=512,temperature: float = 0.1,top_p: float = 0.75):
|
337 |
+
feedback_gen_ok.update(visible=False)
|
338 |
+
_temp= instruct_generate(instruct,input,max_gen_len,temperature,top_p)
|
339 |
+
feedback_gen_box.update(visible=True)
|
340 |
+
return {outputs:_temp,feedback_gen_box: gr.update(visible=True),feedback_gen_ok: gr.update(visible=False)}
|
341 |
+
feedback_gen_submit.click(fn=save_up2, inputs=[instruction, input,outputs,max_len,temp,top_p,gen_radio,feedback_gen], outputs=[feedback_gen_box,feedback_gen_ok], queue=True)
|
342 |
+
inputs = [instruction, input, max_len, temp, top_p]
|
343 |
+
run_botton.click(fn=gen, inputs=inputs, outputs=[outputs,feedback_gen_box,feedback_gen_ok])
|
344 |
+
examples = gr.Examples(examples=["แต่งกลอนวันแม่","แต่งกลอนแปดวันแม่",'อยากลดความอ้วนทำไง','จงแต่งเรียงความเรื่องความฝันของคนรุ่นใหม่ต่อประเทศไทย'],inputs=[instruction])
|
345 |
+
with gr.Tab("ChatBot"):
|
346 |
+
with gr.Column():
|
347 |
+
chatbot = gr.Chatbot(label="Chat Message Box", placeholder="Chat Message Box",show_label=False).style(container=False)
|
348 |
+
with gr.Row():
|
349 |
+
with gr.Column(scale=0.85):
|
350 |
+
msg = gr.Textbox(placeholder="พิมพ์คำถามของคุณที่นี่... (กด enter หรือ submit หลังพิมพ์เสร็จ)",show_label=False)
|
351 |
+
with gr.Column(scale=0.15, min_width=0):
|
352 |
+
submit = gr.Button("Submit")
|
353 |
+
with gr.Column():
|
354 |
+
with gr.Column(visible=False) as feedback_chatbot_box:
|
355 |
+
chatbot_radio = gr.Radio(
|
356 |
+
["Good", "Bad", "Report"], label="Do you think about the chat?"
|
357 |
+
)
|
358 |
+
feedback_chatbot = gr.Textbox(placeholder="Feedback chatbot",show_label=False, lines=4)
|
359 |
+
feedback_chatbot_submit = gr.Button("Submit Feedback")
|
360 |
+
with gr.Row(visible=False) as feedback_chatbot_ok:
|
361 |
+
gr.Markdown("Thank you for feedback.")
|
362 |
+
clear = gr.Button("Clear")
|
363 |
+
def save_up(history,choice,feedback):
|
364 |
+
_bot = list2prompt(history)
|
365 |
+
x=False
|
366 |
+
if choice=="Good":
|
367 |
+
x=sumbit_data(save="chat",prompt=_bot,vote=1,feedback=feedback)
|
368 |
+
elif choice=="Bad":
|
369 |
+
x=sumbit_data(save="chat",prompt=_bot,vote=0,feedback=feedback)
|
370 |
+
else:
|
371 |
+
x=sumbit_data(save="chat",prompt=_bot,vote=3,feedback=feedback)
|
372 |
+
return {feedback_chatbot_ok: gr.update(visible=True),feedback_chatbot_box: gr.update(visible=False)}
|
373 |
+
def user(user_message, history):
|
374 |
+
is_sensitive, respond_message = guardian.filter(user_message)
|
375 |
+
if is_sensitive:
|
376 |
+
bot_message = respond_message
|
377 |
+
else:
|
378 |
+
bot_message = chatgpt_chain.predict(human_input=user_message)
|
379 |
+
history.append((user_message, bot_message))
|
380 |
+
return "", history,gr.update(visible=True)
|
381 |
+
def reset():
|
382 |
+
chatgpt_chain.memory.clear()
|
383 |
+
print("clear!")
|
384 |
+
feedback_chatbot_submit.click(fn=save_up, inputs=[chatbot,chatbot_radio,feedback_chatbot], outputs=[feedback_chatbot_ok,feedback_chatbot_box,], queue=True)
|
385 |
+
clear.click(reset, None, chatbot, queue=False)
|
386 |
+
submit_event = msg.submit(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot,feedback_chatbot_box], queue=True)
|
387 |
+
submit_click_event = submit.click(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot,feedback_chatbot_box], queue=True)
|
388 |
+
with gr.Tab("ChatBot without LangChain"):
|
389 |
+
chatbot2 = gr.Chatbot()
|
390 |
+
msg2 = gr.Textbox(label="Your sentence here... (press enter to submit)")
|
391 |
+
with gr.Column():
|
392 |
+
with gr.Column(visible=False) as feedback_chatbot_box2:
|
393 |
+
chatbot_radio2 = gr.Radio(
|
394 |
+
["Good", "Bad", "Report"], label="Do you think about the chat?"
|
395 |
+
)
|
396 |
+
feedback_chatbot2 = gr.Textbox(placeholder="Feedback chatbot",show_label=False, lines=4)
|
397 |
+
feedback_chatbot_submit2 = gr.Button("Submit Feedback")
|
398 |
+
with gr.Row(visible=False) as feedback_chatbot_ok2:
|
399 |
+
gr.Markdown("Thank you for feedback.")
|
400 |
+
|
401 |
+
def user2(user_message, history):
|
402 |
+
return "", history + [[user_message, None]]
|
403 |
+
def bot2(history):
|
404 |
+
_bot = list2prompt(history)
|
405 |
+
bot_message = gen_chatbot_old(_bot)
|
406 |
+
history[-1][1] = bot_message
|
407 |
+
return history,gr.update(visible=True)
|
408 |
+
def save_up2(history,choice,feedback):
|
409 |
+
_bot = list2prompt(history)
|
410 |
+
x=False
|
411 |
+
if choice=="Good":
|
412 |
+
x=sumbit_data(save="chat",prompt=_bot,vote=1,feedback=feedback,name_model=name_model+"-chat_old")
|
413 |
+
elif choice=="Bad":
|
414 |
+
x=sumbit_data(save="chat",prompt=_bot,vote=0,feedback=feedback,name_model=name_model+"-chat_old")
|
415 |
+
else:
|
416 |
+
x=sumbit_data(save="chat",prompt=_bot,vote=3,feedback=feedback,name_model=name_model+"-chat_old")
|
417 |
+
return {feedback_chatbot_ok2: gr.update(visible=True),feedback_chatbot_box2: gr.update(visible=False)}
|
418 |
+
msg2.submit(user2, [msg2, chatbot2], [msg2, chatbot2], queue=False).then(bot2, chatbot2, [chatbot2,feedback_chatbot_box2])
|
419 |
+
feedback_chatbot_submit2.click(fn=save_up2, inputs=[chatbot2,chatbot_radio2,feedback_chatbot2], outputs=[feedback_chatbot_ok2,feedback_chatbot_box2], queue=True)
|
420 |
+
clear2 = gr.Button("Clear")
|
421 |
+
clear2.click(lambda: None, None, chatbot2, queue=False)
|
422 |
+
demo.queue()
|
423 |
+
demo.launch()
|