Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
# Load model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", device="cpu", trust_remote_code=True) | |
# Streamlit app | |
st.title("Text Generation with Transformers") | |
# Input prompt | |
prompt = st.text_input("Enter your prompt:") | |
# Generate button | |
if st.button("Generate"): | |
with torch.no_grad(): | |
# Tokenize and generate output | |
token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") | |
output_ids = model.generate( | |
token_ids.to(model.device), | |
max_new_tokens=512, | |
do_sample=True, | |
temperature=0.1 | |
) | |
# Decode and display the generated text | |
generated_text = tokenizer.decode(output_ids[0][token_ids.size(1):]) | |
st.text("Generated Text:") | |
st.text(generated_text) | |