import streamlit as st from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", device="cpu", trust_remote_code=True) # Streamlit app st.title("Text Generation with Transformers") # Input prompt prompt = st.text_input("Enter your prompt:") # Generate button if st.button("Generate"): with torch.no_grad(): # Tokenize and generate output token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") output_ids = model.generate( token_ids.to(model.device), max_new_tokens=512, do_sample=True, temperature=0.1 ) # Decode and display the generated text generated_text = tokenizer.decode(output_ids[0][token_ids.size(1):]) st.text("Generated Text:") st.text(generated_text)