Spaces:
Running
Running
File size: 1,144 Bytes
af77804 9d27c6c 4a40fb3 9d27c6c af77804 9d27c6c af77804 9d27c6c c925507 af77804 9d27c6c 0c95c30 af77804 9d27c6c af77804 9d27c6c 0c95c30 af77804 0c95c30 af77804 9d27c6c 0c95c30 9d27c6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Use GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
st.title("Text Generation with Hugging Face Transformers")
# Input prompt from user
prompt = st.text_area("Enter a prompt:", "this news is real pyresearch given right computer vision videos?")
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype="auto", trust_remote_code=True)
# Move the model to the desired device
model.to(device)
# Generate text on button click
if st.button("Generate"):
with torch.no_grad():
token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(device)
output_ids = model.generate(
token_ids,
max_new_tokens=512,
do_sample=True,
temperature=0.1
)
generated_text = tokenizer.decode(output_ids[0][token_ids.size(1):])
st.text("Generated Text:")
st.write(generated_text)
|