Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,32 +2,29 @@ import streamlit as st
|
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
4 |
|
5 |
-
#
|
6 |
-
|
7 |
-
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", trust_remote_code=True)
|
8 |
|
9 |
-
|
10 |
-
model.to("cpu")
|
11 |
|
12 |
-
#
|
13 |
-
st.
|
14 |
|
15 |
-
#
|
16 |
-
|
|
|
17 |
|
18 |
-
# Generate button
|
19 |
if st.button("Generate"):
|
20 |
with torch.no_grad():
|
21 |
-
|
22 |
-
token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
|
23 |
output_ids = model.generate(
|
24 |
-
token_ids
|
25 |
max_new_tokens=512,
|
26 |
do_sample=True,
|
27 |
temperature=0.1
|
28 |
)
|
29 |
-
|
30 |
-
# Decode and display the generated text
|
31 |
generated_text = tokenizer.decode(output_ids[0][token_ids.size(1):])
|
32 |
st.text("Generated Text:")
|
33 |
-
st.
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
4 |
|
5 |
+
# Use GPU if available
|
6 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
7 |
|
8 |
+
st.title("Text Generation with Hugging Face Transformers")
|
|
|
9 |
|
10 |
+
# Input prompt from user
|
11 |
+
prompt = st.text_area("Enter a prompt:", "this news is real pyresearch given right computer vision videos?")
|
12 |
|
13 |
+
# Load model and tokenizer
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
|
15 |
+
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype="auto", device=device, trust_remote_code=True)
|
16 |
|
17 |
+
# Generate text on button click
|
18 |
if st.button("Generate"):
|
19 |
with torch.no_grad():
|
20 |
+
token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(device)
|
|
|
21 |
output_ids = model.generate(
|
22 |
+
token_ids,
|
23 |
max_new_tokens=512,
|
24 |
do_sample=True,
|
25 |
temperature=0.1
|
26 |
)
|
27 |
+
|
|
|
28 |
generated_text = tokenizer.decode(output_ids[0][token_ids.size(1):])
|
29 |
st.text("Generated Text:")
|
30 |
+
st.write(generated_text)
|