Spaces:
Sleeping
Sleeping
File size: 1,223 Bytes
83c1b5b 3e35f55 83c1b5b 3e35f55 83c1b5b 3e35f55 dfb8d4c 3e35f55 dfb8d4c 83c1b5b dfb8d4c 83c1b5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import streamlit as st
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
def main():
st.title("Translation App")
# Load model and tokenizer
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-one-to-many-mmt")
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-one-to-many-mmt", src_lang="en_XX")
# Input text area
input_text = st.text_area("Enter text to translate", "")
if st.button("Translate"):
# Perform translation
translated_text = translate_text(input_text, model, tokenizer)
# Display translated text
st.write("Translated Text:")
st.write(translated_text)
def translate_text(input_text, model, tokenizer):
# Tokenize input text
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
generated_tokens = model.generate(
**input_ids,
forced_bos_token_id=tokenizer.lang_code_to_id["hi_IN"]
)
# Decode translated text
translated_text = tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
return translated_text
if __name__ == '__main__':
main()
|