Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
3 |
+
|
4 |
+
def main():
|
5 |
+
st.title("Translation App")
|
6 |
+
|
7 |
+
# Load model and tokenizer
|
8 |
+
model_name = "facebook/mbart-large-50-one-to-many-mmt"
|
9 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
+
|
12 |
+
# Input text area
|
13 |
+
input_text = st.text_area("Enter text to translate", "")
|
14 |
+
|
15 |
+
if st.button("Translate"):
|
16 |
+
# Perform translation
|
17 |
+
translated_text = translate_text(input_text, model, tokenizer)
|
18 |
+
|
19 |
+
# Display translated text
|
20 |
+
st.write("Translated Text:")
|
21 |
+
st.write(translated_text)
|
22 |
+
|
23 |
+
def translate_text(input_text, model, tokenizer):
|
24 |
+
# Tokenize input text
|
25 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
|
26 |
+
|
27 |
+
# Generate translation
|
28 |
+
translated_ids = model.generate(input_ids)
|
29 |
+
|
30 |
+
# Decode translated text
|
31 |
+
translated_text = tokenizer.decode(translated_ids[0], skip_special_tokens=True)
|
32 |
+
|
33 |
+
return translated_text
|
34 |
+
|
35 |
+
if __name__ == '__main__':
|
36 |
+
main()
|