File size: 1,230 Bytes
3894000 87f1818 de3d1f9 3894000 de3d1f9 3894000 de3d1f9 3894000 de3d1f9 86258b2 3894000 de3d1f9 ad6c4be 89a1ce6 02905e8 c3c16bf de3d1f9 97d5be8 de3d1f9 3894000 86258b2 3894000 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
import gradio as gr
from main_operations import ss_intersect
#from datasets import load_dataset
#ds = load_dataset('psalama/NYC_sensitive_sites', data_files=data_files)
iface = gr.Interface(
fn=ss_intersect,
inputs=[
gr.inputs.File(label="Building Footprints GeoJSON"),
gr.Radio(["Parks Properties", "Park Zones"], label="Which Sensitive Sites?", info="From NYC DPR", type="index"),
gr.inputs.Slider(minimum=0.0, maximum=10.0, default=4.3, label="Building Height Multiplier"),
gr.inputs.Number(default=200, label="Default Building Height"), #Can I make this optional?
],
outputs=[
gr.outputs.Image(type="pil", label="Result Image"),
gr.outputs.File(label="Building Buffers"),
gr.outputs.File(label="Union of Building Buffers"),
gr.outputs.Textbox(label="Building intersection descriptions"),
],
examples=[
["files/building4test.geojson", "Parks Properties", 4.3, 200],
["files/building4test.geojson", "Park Zones", 4.3, 900],
],
title="Shadow Proximity",
description="Upload proposed building footprints in a GeoJSON file and select a numeric value to get the building proximity prediction.",
)
iface.launch() |