psalama commited on
Commit
de3d1f9
·
1 Parent(s): 395a530

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +107 -10
app.py CHANGED
@@ -1,27 +1,124 @@
1
  import gradio as gr
2
  import geopandas as gpd
3
  from shapely.geometry import shape
 
4
 
5
- def predict(geojson1, geojson2, value):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  # Read the GeoJSON files
7
- gdf1 = gpd.read_file(geojson1.name)
8
- gdf2 = gpd.read_file(geojson2.name)
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
- # Use the model to make a prediction
11
- #output_image = model.predict(gdf1, gdf2, value)
 
 
12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  # Return the image
14
- return output_image
 
15
 
16
  iface = gr.Interface(
17
- fn=predict,
18
  inputs=[
19
- gr.inputs.File(label="GeoJSON Input 1"),
20
- gr.inputs.File(label="GeoJSON Input 2"), #This should be optional
 
21
  gr.inputs.Slider(minimum=0.0, maximum=10.0, default=4.3, label="Building Height Multiplier"),
22
  gr.inputs.Number(default=200, label="Default Building Height"), #Can I make this optional?
23
  ],
24
- outputs=gr.outputs.Image(type="pil"),
 
 
 
 
 
 
25
  title="Shadow Proximity",
26
  description="Upload proposed building footprints in a GeoJSON file and select a numeric value to get the building proximity prediction.",
27
  )
 
1
  import gradio as gr
2
  import geopandas as gpd
3
  from shapely.geometry import shape
4
+ #from datasets import load_dataset
5
 
6
+ #ds = load_dataset('psalama/NYC_sensitive_sites', data_files=data_files)
7
+
8
+ def process_buildings(input_gdf, sensitive_sites_gdf, default_building_height_m, multiplier_factor):
9
+ # List to store all intersected sensitive sites
10
+ intersected_sites = []
11
+
12
+ # List to store all buffers
13
+ buffers = []
14
+
15
+ # Iterate over each building in the input file
16
+ for idx, building in input_gdf.iterrows():
17
+ building_name = building.get('building_name', 'Unnamed building')
18
+
19
+ # If the 'building_height' field exists and its value is not null or zero for this building,
20
+ # use it as the building height. Otherwise, use the default building height provided by the user.
21
+ if 'building_height' in building and pd.notnull(building['building_height']) and building['building_height'] != 0:
22
+ building_height_m = building['building_height'] * 0.3048
23
+ else:
24
+ building_height_m = default_building_height_m
25
+
26
+ buffer_distance_m = building_height_m * multiplier_factor
27
+
28
+ # Convert building's geometry to EPSG:3857 for accurate meter-based distance measurement
29
+ building_geometry = gpd.GeoSeries([building['geometry']], crs="EPSG:4326")
30
+ building_geometry_m = building_geometry.to_crs("EPSG:3857")
31
+
32
+ # Create a buffer around the building and convert it to a GeoDataFrame
33
+ building_buffer = building_geometry_m.buffer(buffer_distance_m)
34
+ building_buffer_gdf = gpd.GeoDataFrame(geometry=building_buffer, crs="EPSG:3857")
35
+ building_buffer_gdf = building_buffer_gdf.to_crs("EPSG:4326")
36
+
37
+ # Convert back to feet for storing and printing, rounding to the nearest foot
38
+ building_height_ft = round(building_height_m / 0.3048)
39
+ buffer_distance_ft = round(buffer_distance_m / 0.3048)
40
+
41
+ # Assign additional attributes
42
+ building_buffer_gdf['building_name'] = building_name
43
+ building_buffer_gdf['building_height'] = building_height_ft
44
+ building_buffer_gdf['buffer_distance'] = buffer_distance_ft
45
+
46
+ buffers.append(building_buffer_gdf)
47
+
48
+ # Check if the buffer intersects with any sensitive sites
49
+ intersects = gpd.overlay(building_buffer_gdf, sensitive_sites_gdf, how='intersection')
50
+
51
+ if not intersects.empty:
52
+ print(f"Building {idx} ({building_name}), height: {building_height_ft}, buffer distance: {buffer_distance_ft} is in the vicinity of a sensitive site.")
53
+ intersected_sites.append(intersects)
54
+ else:
55
+ print(f"Building {idx} ({building_name}), height: {building_height_ft}, buffer distance: {buffer_distance_ft} is not in the vicinity of any sensitive sites.")
56
+
57
+ return buffers, intersected_sites
58
+
59
+
60
+ def ss_intersect(geojson1, ss_geoselect, multiplier_factor, default_building_height): #function should be renamed!
61
  # Read the GeoJSON files
62
+ input_gdf = gpd.read_file(geojson1.name)
63
+
64
+ # Check that CRS is EPSG:4326
65
+ if input_gdf.crs.to_epsg() != 4326 or sensitive_sites_gdf.crs.to_epsg() != 4326:
66
+ raise ValueError("Input GeoJSON files must be in CRS EPSG:4326")
67
+
68
+ if ss_geoselect==0:
69
+ sensitive_sites_gdf = gpd.read_file("sensitive_sites/NYC_Parks_Properties.geojson")
70
+ else:
71
+ sensitive_sites_gdf = gpd.read_file("sensitive_sites/NYC_Parks_Zones.geojson")
72
+
73
+ default_building_height_m = default_building_height * 0.3048
74
+
75
+ buffers, intersected_sites = process_buildings(input_gdf, sensitive_sites_gdf, default_building_height_m, multiplier_factor)
76
 
77
+ # Concatenate all buffer GeoDataFrames and save as a GeoJSON file
78
+ buffers_gdf = pd.concat(buffers, ignore_index=True)
79
+ buffers_gdf = buffers_gdf.to_crs("EPSG:4326")
80
+ buffers_gdf.to_file("building_buffers.geojson", driver='GeoJSON')
81
 
82
+ # Concatenate all intersected sensitive sites and save as a GeoJSON file
83
+ if intersected_sites:
84
+ intersected_sites_gdf = pd.concat(intersected_sites, ignore_index=True)
85
+ intersected_sites_gdf = intersected_sites_gdf.to_crs("EPSG:4326")
86
+ intersected_sites_gdf.to_file("intersected_sensitive_sites.geojson", driver='GeoJSON')
87
+ else:
88
+ print("No buildings are in the vicinity of any sensitive sites.")
89
+
90
+ # Perform the union operation if there is more than one buffer
91
+ if len(buffers) > 1:
92
+ # Perform a unary union on the geometry column of the GeoDataFrame
93
+ buffer_union = unary_union(buffers_gdf['geometry'])
94
+
95
+ # Create a new GeoDataFrame from the union result
96
+ buffer_union_gdf = gpd.GeoDataFrame(geometry=[buffer_union], crs="EPSG:4326")
97
+
98
+ # Save the union GeoDataFrame as a GeoJSON file
99
+ buffer_union_gdf.to_file("buffer_union.geojson", driver='GeoJSON')
100
+
101
+
102
  # Return the image
103
+ return output_image, building_vicinity
104
+
105
 
106
  iface = gr.Interface(
107
+ fn=ss_intersect,
108
  inputs=[
109
+ gr.inputs.File(label="Building Footprints GeoJSON"),
110
+ gr.Radio(["Parks Properties", "Park Zones"], label="Which Sensitive Sites?", info="From NYC DPR", type="index"),
111
+ #gr.inputs.File(label="Sensitive Sites GeoJSON"), #Replaced by radio button above
112
  gr.inputs.Slider(minimum=0.0, maximum=10.0, default=4.3, label="Building Height Multiplier"),
113
  gr.inputs.Number(default=200, label="Default Building Height"), #Can I make this optional?
114
  ],
115
+ outputs=[
116
+ gr.outputs.File(label="Intersecting Buildings"),
117
+ gr.outputs.Textbox(label="Building and Sensitive Site Vicinities"),
118
+ ]
119
+ examples=[
120
+ ["files/building4test.geojson", "Parks Properties", 4.3, 200],
121
+ ],
122
  title="Shadow Proximity",
123
  description="Upload proposed building footprints in a GeoJSON file and select a numeric value to get the building proximity prediction.",
124
  )