Spaces:
Sleeping
Sleeping
File size: 7,249 Bytes
b0d8d39 ae95c81 b0d8d39 ae95c81 b0d8d39 ae95c81 b0d8d39 ae95c81 b0d8d39 ae95c81 b0d8d39 43f681b ae95c81 b0d8d39 ae95c81 b0d8d39 ae95c81 b0d8d39 ae95c81 b0d8d39 ae95c81 b0d8d39 ae95c81 b0d8d39 ae95c81 b0d8d39 ae95c81 b0d8d39 ae95c81 b0d8d39 ae95c81 b0d8d39 ae95c81 b0d8d39 ae95c81 b0d8d39 ae95c81 b0d8d39 ae95c81 b0d8d39 ae95c81 b0d8d39 ae95c81 b0d8d39 ae95c81 b0d8d39 ae95c81 b0d8d39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import h5py
import gradio as gr
from tensorflow.keras.utils import img_to_array, load_img
from keras.models import load_model
import numpy as np
from deep_translator import GoogleTranslator
# Load the pre-trained model from the local path
model_path = 'citrus.h5'
# Check if the model is loading correctly
try:
with h5py.File(model_path, 'r+') as f:
if 'groups' in f.attrs['model_config']:
model_config_string = f.attrs['model_config']
model_config_string = model_config_string.replace('"groups": 1,', '')
model_config_string = model_config_string.replace('"groups": 1}', '}')
f.attrs['model_config'] = model_config_string.encode('utf-8')
model = load_model(model_path)
print("Model loaded successfully.")
except Exception as e:
print(f"Error loading model: {e}")
def predict_disease(image_file, model, all_labels, target_language):
try:
# Load and preprocess the image
print(f"Received image file: {image_file}")
img = load_img(image_file, target_size=(224, 224)) # Ensure image size matches model input
img_array = img_to_array(img)
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
img_array = img_array / 255.0 # Normalize the image
# Predict the class
predictions = model.predict(img_array)
# Validate predictions
confidence_threshold = 0.98 # Require at least 98% confidence
confidence_scores = predictions[0]
max_confidence = np.max(confidence_scores)
if max_confidence < confidence_threshold:
print(f"Prediction confidence ({max_confidence:.2f}) is too low.")
return f"""
<h3 style="color:red; text-align:center;">
Please upload a clearer image of the plant.
</h3>
"""
predicted_class = np.argmax(predictions[0])
# Get the predicted class label
predicted_label = all_labels[predicted_class]
# Translate the predicted label to the selected language
translated_label = GoogleTranslator(source='en', target=target_language).translate(predicted_label)
# Provide pesticide information based on the predicted label
if predicted_label == 'Citrus Greening':
pesticide_info = """
<h2><center><b>Citrus Greening</b></center></h2>
<h4>PESTICIDES TO BE USED:</h4><br>
<ul style="font-size:17px;margin-left:40px;">
<li>1. Oxytetracycline (Terramycin)</li>
<li>2. Streptomycin (Streptomycin sulfate)</li>
<li>3. Mancozeb (Dithane)</li>
<li>4. Copper oxychloride (Kocide)</li>
</ul><br>
<center><p class="note" style="font-size:15px;"><b>* * * IMPORTANT NOTE * * *</b></p></center><br>
<center><p style="font-size:13px;">Be sure to follow local regulations and guidelines for application</p></center>
"""
elif predicted_label == 'Citrus Canker':
pesticide_info = """<h2><center><b>Citrus Canker</b></center></h2>
<h4>PESTICIDES TO BE USED:</h4><br>
<ul style="font-size:17px;margin-left:40px;">
<li>1. Oxytetracycline (Terramycin)</li>
<li>2. Streptomycin (Streptomycin sulfate)</li>
<li>3. Mancozeb (Dithane)</li>
<li>4. Copper oxychloride (Kocide)</li>
<li>5. Azoxystrobin (Heritage)</li>
</ul><br>
<center><p class="note" style="font-size:15px;"><b>* * * IMPORTANT NOTE * * *</b></p></center><br>
<center><p style="font-size:13px;">Be sure to follow local regulations and guidelines for application</p></center>
"""
elif predicted_label == 'Citrus Black Spot':
pesticide_info = """<h2><center><b>Citrus Black Spot</b></center></h2>
<h4>PESTICIDES TO BE USED:</h4><br>
<ul style="font-size:17px;margin-left:40px;">
<li>1. Propiconazole (Tilt)</li>
<li>2. Chlorothalonil (Daconil)</li>
<li>3. Mancozeb (Dithane)</li>
<li>4. Azoxystrobin (Heritage)</li>
<li>5. Pyraclostrobin (Cabrio)</li>
</ul><br>
<center><p class="note" style="font-size:15px;"><b>* * * IMPORTANT NOTE * * *</b></p></center><br>
<center><p style="font-size:13px;">Be sure to follow local regulations and guidelines for application</p></center>
"""
elif predicted_label == 'Citrus Healthy':
pesticide_info = """<h2><center><b>Citrus Healthy</b></center></h2>
<h5> No pesticides needed"""
else:
pesticide_info = 'No pesticide information available.'
print(f"Pesticide Info (Before Translation): {pesticide_info}")
# Translate the pesticide information to the selected language
translated_pesticide_info = GoogleTranslator(source='en', target=target_language).translate(pesticide_info)
print(f"Translated Pesticide Info: {translated_pesticide_info}")
# Return translated label and pesticide information with associated styling
predicted_label_html = f"""
{translated_pesticide_info}
"""
return predicted_label_html
except Exception as e:
print(f"Error during prediction: {e}")
return f"<h3>Error: {e}</h3>"
# List of class labels
all_labels = [
'Citrus Greening',
'Citrus Canker',
'Citrus Healthy','Citrus Black Spot'
]
# Language codes and their full names (display full names in dropdown)
language_choices = {
'hi': 'Hindi',
'te': 'Telugu',
'en': 'English',
'ml': 'Malayalam',
'ta': 'Tamil',
'bn': 'Bengali',
'gu': 'Gujarati',
'kn': 'Kannada',
'mr': 'Marathi'
}
# Mapping full names back to their corresponding language code
full_to_code = {value: key for key, value in language_choices.items()}
# Create a dropdown of full language names, using the full name in the UI
languages = list(language_choices.values()) # List of full language names
# Define the Gradio interface
def gradio_predict(image_file, target_language):
# Map full name back to language code for translation
language_code = full_to_code.get(target_language, 'en')
return predict_disease(image_file, model, all_labels, language_code)
# Create the Gradio interface
gr_interface = gr.Interface(
fn=gradio_predict,
inputs=[
gr.Image(type="filepath"), # Image input for disease prediction
gr.Dropdown(label="Select language", choices=languages, value='English') # Language selection dropdown with full names
],
outputs="html", # Output will be in HTML (translated text)
title="Citrus Disease Predictor",
description="Upload an image of a plant to predict the disease and get the translated label and pesticide information in the selected language."
)
# Launch the Gradio app
gr_interface.launch()
|